Ni-doped ZnO nanowire arrays (Ni–ZnO NRs) with different Ni concentrations are grown on etched fluorine-doped tin oxide electrodes by the hydrothermal method. The Ni–ZnO NRs with a nickel precursor concentration of 0–12 at. % are adjusted to improve the selectivity and response of the devices. The NRs’ morphology and microstructure are investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The sensitive property of the Ni–ZnO NRs is measured. It is found that the Ni–ZnO NRs with an 8 at. % Ni precursor concentration have high selectivity for H2S and a large response of 68.9 at 250 °C compared to other gases including ethanol, acetone, toluene, and nitrogen dioxide. Their response/recovery time is 75/54 s. The sensing mechanism is discussed in terms of doping concentration, optimum operating temperature, gas type, and gas concentration. The enhanced performance is related to the regularity degree of the array and the doped Ni3+ and Ni2+ ions, which increases the active sites for oxygen and target gas adsorption on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.