Previously visible watermark removal algorithms required the location of known watermarks. A corresponding removal algorithm is then proposed based on the location and the feature of the watermark. If the location of the watermark is random or the watermark has different angles, the watermark removal algorithm will encounter problems. The authors recommend a visible watermark removal algorithm based on generative adversarial networks (GANs) and self‐attention mechanisms. During the training, the authors introduce a GANs model to build mappings between watermarked images and real images. The authors observe that the feature of the watermarked region in different watermarked images is invariant in nature, and the other regions are changed. The self‐attention layer will automatically focus on this invariant feature. Experiments on two public datasets prove that the authors’ model has gained excellent performance. Compared with the other four most competitive watermark removal models, the authors improve the watermark removal rate indicator from 17 to 92%. For the other four evaluation indicators, the authors have improved performance by up to 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.