In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: https://github.com/zhunzhong07/Random-Erasing.
When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially those fully automatic, unsupervised solutions. In this paper, we propose a k-reciprocal encoding method to re-rank the re-ID results. Our hypothesis is that if a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match. Specifically, given an image, a k-reciprocal feature is calculated by encoding its k-reciprocal nearest neighbors into a single vector, which is used for re-ranking under the Jaccard distance. The final distance is computed as the combination of the original distance and the Jaccard distance. Our re-ranking method does not require any human interaction or any labeled data, so it is applicable to large-scale datasets. Experiments on the large-scale Market-1501, CUHK03, MARS, and PRW datasets confirm the effectiveness of our method 1 .
This paper considers the domain adaptive person reidentification (re-ID) problem: learning a re-ID model from a labeled source domain and an unlabeled target domain. Conventional methods are mainly to reduce feature distribution gap between the source and target domains. However, these studies largely neglect the intra-domain variations in the target domain, which contain critical factors influencing the testing performance on the target domain. In this work, we comprehensively investigate into the intra-domain variations of the target domain and propose to generalize the re-ID model w.r.t three types of the underlying invariance, i.e., exemplar-invariance, camerainvariance and neighborhood-invariance. To achieve this goal, an exemplar memory is introduced to store features of the target domain and accommodate the three invariance properties. The memory allows us to enforce the invariance constraints over global training batch without significantly increasing computation cost. Experiment demonstrates that the three invariance properties and the proposed memory are indispensable towards an effective domain adaptation system. Results on three re-ID domains show that our domain adaptation accuracy outperforms the state of the art by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.