We define two two-variable polynomials for rooted trees and one twovariable polynomial for unrooted trees, all of which are based on the coranknullity formulation of the Tutte polynomial of a graph or matroid. For the rooted polynomials, we show that the polynomial completely determines the rooted tree, i.e., rooted trees TI and T, are isomorphic if and only if f(T,) = f(T2). The corresponding question is open in the unrooted case, although we can reconstruct the degree sequence, number of subtrees of size k for all k , and the number of paths of length k for all k from the (unrooted) polynomial. The key difference between these three polynomials and the standard Tutte polynomial is the rank function used; we use pruning and branching ranks to define the polynomials. We also give a subtree expansion of the polynomials and a deletion-contraction recursion they satisfy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.