The surface plasmon resonance (SPR) of noble metals is known to improve the efficiency of various processes and devices. The photocatalytic process is the production of fuels and storage of solar photons in chemical bonds without imposing harmful threats to the environment. Photovoltaics are other devices utilizing solar energy for electrical energy. Similarly, other optoelectronic devices like photodetectors absorb photons and convert it into charges via electron–hole dissociation processes. In contrast, light‐emitting optoelectronic devices work based on the phenomenon of charge recombination to produce light. All these devices, however, have efficiency limitations, which impede the application of novel functional materials in these devices. A more direct approach is the utilization of noble metals and their complexes, which significantly enhance the efficiencies of these devices by SPR. This article highlights recent works and applications of noble metals by SPR‐enhanced photocatalysis for hydrogen evolution from water, CO2 conversion into useful compounds, and oxidation of hazardous pollutants. In addition, the plasmon‐enhancement of optoelectronic devices is summarized. Several possible mechanisms that have been previously reported in the literature are discussed in this work, with particular emphasis on different features of these mechanisms involving devices that are not highlighted and therefore need more attention.
Die rationale Entwicklung effizienter Photokatalysatoren mit günstiger Ladungstrennung und breiter spektraler Absorption ist entscheidend für eine ökonomische Umwandlung von Solarenergie in chemische Energie. F. Q. Bai, J. Tang, L. Q. Jing et al. zeigen in ihrer Zuschrift auf S. 10989 H‐verbrückte ZnPc/BiVO4‐Nanokomposite als ultradünnen, räumlich angepassten 2D/2D‐Heteroübergang zur effizienten photokatalytischen CO2‐Reduktion über eine breite Region des sichtbaren Lichts.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g−1 h−1) and ≈31‐time (313 µmol g−1 h−1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced •OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g−1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced •CO2 and •H as active radicals would be dominant to initiate the conversion of CO2 to CH4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.