Automated retinal disease detection and grading is one of the most researched areas in medical image analysis. In recent years, Deep Learning models have attracted much attention in this field. Hence, in this paper, we present a Deep Learning-based, lightweight, fully automated end-to-end diagnostic system for the detection of the two major retinal diseases, namely diabetic macular oedema (DME) and drusen macular degeneration (DMD). Early detection of these diseases is important to prevent vision impairment. Optical coherence tomography (OCT) is the main imaging technique for detecting these diseases. The model proposed in this work is based on residual blocks and channel attention modules. The performance of the model is evaluated using the publicly available Mendeley OCT dataset and the Duke dataset. We were able to achieve a classification accuracy of 99.5% in the Mendeley test dataset and 94.9% in the Duke dataset with the proposed model. For the application, we performed an extensive evaluation of pre-trained models (LeNet, AlexNet, VGG-16, ResNet50 and SE-ResNet). The proposed model has a much smaller number of trainable parameters and shows superior performance compared to existing methods.
In this paper, we have considered the utility of multi-normalization and ancillary measures, for the optimal score level fusion of fingerprint and voice biometrics. An efficient matching score preprocessing technique based on multi-normalization is employed for improving the performance of the multimodal system, under various noise conditions. Ancillary measures derived from the feature space and the score space are used in addition to the matching score vectors, for weighing the modalities, based on their relative degradation. Reliability (dispersion) and the separability (inter-/intra-class distance and d-prime statistics) measures under various noise conditions are estimated from the individual modalities, during the training/validation stage. The 'best integration weights' are then computed by algebraically combining these measures using the weighted sum rule. The computed integration weights are then optimized against the recognition accuracy using techniques such as grid search, genetic algorithm and particle swarm optimization. The experimental results show that, the proposed biometric solution leads to considerable improvement in the recognition performance even under low signal-to-noise ratio (SNR) conditions and reduces the false acceptance rate (FAR) and false rejection rate (FRR), making the system useful for security as well as forensic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.