BackgroundCefazolin and ceftriaxone are frequently used to treat methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia, especially in the realm of outpatient parenteral antimicrobial therapy. Both antimicrobials have been associated with favorable clinical outcomes for mixed MSSA infections. However, limited published data exist specifically comparing the use of these agents for the treatment of MSSA bacteremia.MethodsWe conducted a retrospective cohort study of Veteran patients with MSSA bacteremia who received ≥14 days of cefazolin or ceftriaxone between 2009 and 2014. Rates of treatment failure were compared between both groups. Treatment failure was defined as therapy extension, incomplete therapy, unplanned oral suppressive therapy, relapse of infection, or hospital admission or surgery within 90 days.ResultsOut of 71 patients, 38 received treatment with cefazolin and 33 with ceftriaxone. The overall rate of treatment failure was 40.8%, with significantly more failures among patients receiving ceftriaxone (54.5% versus 28.9%; P = .029). Factors associated with treatment failure included longer duration of parenteral therapy, heart failure, and treatment in an external skilled nursing facility as compared with treatment in the Department of Veterans Affairs attached Community Living Center.ConclusionsCeftriaxone had a higher rate of treatment failure than cefazolin for the treatment of MSSA bacteremia in a Veteran population. Potential reasons for this could include the higher protein binding of ceftriaxone, ultimately resulting in lower serum concentrations of free drug, or other unknown factors. Further studies are warranted to confirm these results.
Objective: We examined the impact of microbiological results from respiratory samples on choice of antibiotic therapy in patients treated for hospital-acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP). Design: Four-year retrospective study. Setting: Veterans’ Health Administration (VHA). Patients: VHA patients hospitalized with HAP or VAP and with respiratory cultures between October 1, 2014, and September 30, 2018. Interventions: We compared patients with positive and negative respiratory culture results, assessing changes in antibiotic class and Antibiotic Spectrum Index (ASI) from the day of sample collection (day 0) through day 7. Results: Between October 1, 2014, and September 30, 2018, we identified 5,086 patients with HAP/VAP: 2,952 with positive culture results and 2,134 with negative culture results. All-cause 30-day mortality was 21% for both groups. The mean time from respiratory sample receipt in the laboratory to final respiratory culture result was longer for those with positive (2.9 ± 1.3 days) compared to negative results (2.5 ± 1.3 days; P < .001). The most common pathogens were Staphylococcus aureus and Pseudomonas aeruginosa. Vancomycin and β-lactam/β-lactamase inhibitors were the most commonly prescribed agents. The decrease in the median ASI from 13 to 8 between days 0 and 6 was similar among patients with positive and negative respiratory cultures. Patients with negative cultures were more likely to be off antibiotics from day 3 onward. Conclusions: The results of respiratory cultures had only a small influence on antibiotics used during the treatment of HAP/VAP. The decrease in ASI for both groups suggests the integration of antibiotic stewardship principles, including de-escalation, into the care of patients with HAP/VAP.
Background: The survival of patients with hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) is largely determined by the timely administration of effective antibiotic therapy. Guidelines for the treatment HAP and VAP recommend empiric treatment with broad-spectrum antibiotics and tailoring of antibiotic therapy once results of microbiological testing are available. Objective: We examined the influence of bacterial identification and antibiotic susceptibility testing on antibiotic therapy for patients with HAP or VAP. Methods: We used the US Veterans’ Health Administration (VHA) database to identify a retrospective cohort of patients diagnosed with HAP or VAP between fiscal year 2015 and 2018. We further analyzed patients who were started on empiric antibiotic therapy, for whom microbiological test results from a respiratory sample were available within 7 days and who were alive within 48 hours of sample collection. We used the antibiotic spectrum index (ASI) to compare antibiotics prescribed the day before and the day after availability of bacterial identification and antibiotic susceptibility testing results. Results: We identified 4,669 cases of HAP and VAP in 4,555 VHA patients. The median time from respiratory sample receipt in the laboratory to final result of bacterial identification and antibiotic susceptibility testing was 2.22 days (IQR, 1.31–3.38 days). The most common pathogen was Staphylococcus aureus (n = 994), with methicillin resistance in 58% of those isolates tested. The next most common pathogen was Pseudomonas spp (n = 946 isolates). The susceptibility of antipseudomonal antibiotics, when tested, was as follows: 64% to carbapenems, 74% to cephalosporins, 75% to β-lactam/β-lactamase inhibitors, 69% to fluoroquinolones, and 95% to amikacin. Lactose-fermenting gram-negative bacteria (296 Escherichia coli and 360 Klebsiella pneumoniae) were also common. Among the 3,094 cases who received empiric antibiotic therapy, 607 (20%) had antibiotics stopped the day after antibiotic susceptibility results became available, 920 (30%) had a decrease in ASI, 1,075 (35%) had no change in ASI, and 492 (16%) had an increase in ASI (Fig. 1). Among the 1,098 patients who were not started on empiric antibiotic therapy, only 154 (14%) were started on antibiotic therapy the day after antibiotic susceptibility results became available. Conclusions: Changes in antibiotic therapy occurred in at least two-thirds of cases the day after bacterial identification and antibiotic susceptibility results became available. These results highlight how respiratory cultures can inform the treatment and improve antibiotic stewardship for patients with HAP/VAP.Funding: This study was supported by Accelerate Diagnostics.Disclosures: None
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.