One of the main goals of sensor networks is to provide accurate information about a sensing field for an extended period of time. This requires collecting measurements from as many sensors as possible to have a better view of the sensor surroundings. However, due to energy limitations and to prolong the network lifetime, the number of active sensors should be kept to a minimum. To resolve this conflict of interest, sensor selection schemes are used. In this paper, we survey different schemes that are used to select sensors. Based on the purpose of selection, we classify the schemes into (1) coverage schemes, (2) target tracking and localization schemes, (3) single mission assignment schemes and (4) multiple missions assignment schemes. We also look at solutions to relevant problems from other areas and consider their applicability to sensor networks. Finally, we take a look at the open research problems in this field.
This article develops a utility-based optimization framework for resource sharing by multiple competing missions in a mission-oriented wireless sensor network (WSN) environment. Prior work on network utility maximization (NUM) based optimization has focused on unicast flows with sender-based utilities in either wireline or wireless networks. In this work, we develop a generalized NUM model to consider three key new features observed in mission-centric WSN environments: i) the definition of the utility of an individual mission (receiver) as a joint function of data from multiple sensor sources; ii) the consumption of each sender's (sensor) data by multiple missions; and iii) the multicast-tree-based dissemination of each sensor's data flow, using link-layer broadcasts to exploit the “wireless broadcast advantage” in data forwarding. We show how a price-based, distributed protocol (WSN-NUM) can ensure optimal and proportionally fair rate allocation across multiple missions, without requiring any coordination among missions or sensors. We also discuss techniques to improve the speed of convergence of the protocol, which is essential in an environment as dynamic as the WSN. Further, we analyze the impact of various network and protocol parameters on the bandwidth utilization of the network, using a discrete-event simulation of a stationary wireless network. Finally, we corroborate our simulation-based performance results of the WSN-NUM protocol with an implementation of an 802.11b network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.