Hypersonic re-entry flows span a wide range of length scales where regions of both rarefied and continuum flow exist. Traditional computational fluid dynamics (CFD) techniques do not provide an accurate solution for the rarefied regions of such 'mixed' flow fields. Although direct simulation Monte Carlo (DSMC) can be used to accurately capture both the continuum and rarefied features of 'mixed' flow fields, they are computationally expensive when employed to simulate the low Knudsen number continuum regimes. Thus, a hybrid framework for seamlessly combining the two methodologies, CFD and DSMC, continues to be a topic of significant research effort. Ensuring consistency in the reaction kinetics and transport models employed within CFD and DSMC is a crucial requirement for obtaining a reliable solution from a hybrid framework for combined continuum/rarefied high speed flows. This paper represents one of the first studies to utilize the calibrated transport parameters developed to ensure consistency between CFD and DSMC solvers. The new variable soft sphere (VSS) parameters are compared to both previous "standard" variable hard sphere (VHS) parameters and also to solutions from the CFD transport properties that the new parameters were developed to reproduce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.