Chronic treatment with insulin-like growth factor I (IGF-I) improves contractile function in congestive heart failure and ischemic cardiomyopathy. The present study investigated the effect of chronic treatment with IGF-I on intrinsic myocyte function and the role of the phosphatidylinositol (PI)3-kinase-Akt-sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a signaling cascade in these responses. Myocytes were isolated from 23 adult rats and cultured with and without IGF-I (10(-6) M). After 48 h of treatment, myocyte function was evaluated. IGF-I increased contractile function (percent contraction, 7.7 +/- 0.3% vs. 4.5 +/- 0.3%; P < 0.01) and accelerated relaxation time (time for 70% relengthening, 81 +/- 4 vs. 106 +/- 5 ms; P < 0.05) compared with untreated myocytes [control (Con)]. The enhanced function was associated with an increase in Ca(2+) transients assessed by fura-2 (340/380 nm; IGF-I, 0.42 +/- 0.02 vs. Con, 0.25 +/- 0.01; P < 0.01). The PI3-kinase inhibitor LY-249002 (10(-9) M) abolished the enhanced function caused by IGF-I. IGF-I increased both Akt and SERCA2a protein levels 2.5- and 4.8-fold, respectively, compared with those of Con (P < 0.01); neither phospholamban nor calsequestrin was affected. To evaluate whether the SERCA2a protein was directly mediated by Akt-SERCA2a signaling, IGF-I-induced changes in the SERCA2a protein were compared in myocytes transfected with adenovirus harboring either constitutively active Akt [multiplicity of infection (MOI), 15] or dominant negative Akt (dnAkt; MOI, 15). The ability of IGF-I to upregulate the SERCA2a protein in myocytes transfected with active Akt was absent in dnAkt myocytes. Taken together, our findings indicate that chronic treatment with IGF-I enhances intrinsic myocyte function and that this effect is due to an enhancement in intracellular Ca(2+) handling, secondary to the activation of the PI3-kinase-Akt-SERCA2a signaling cascade.
Nitric oxide (NO) derived from endothelial NO synthase (NOS) (eNOS) has been identified as a trigger for the second window of protection (SWOP), but its role as a mediator during the SWOP is a matter of debate. Eighteen mongrel dogs were chronically instrumented to measure left ventricular function, coronary blood flow, and wall thickening. Myocardial preconditioning was induced by 10 min coronary artery occlusion. After 24 h of reperfusion (during the SWOP), the hearts were excised. Coronary microvessels were isolated and incubated in presence of 1) the endothelium-dependent agonists carbachol and bradykinin, 2) the calcium ionophore A23187, and 3) the angiotensin-converting enzyme (ACE) inhibitors enalaprilat and ramiprilat. Nitrite, a metabolite of NO, was measured. Under baseline conditions, nitrite production in microvessels from SWOP was 30% higher than that from normal (96 +/- 4 vs. 74 +/- 3 pmol/mg, P < 0.01, respectively). Nitrite production in response to carbachol, bradykinin, and A23187 was also enhanced in microvessels from SWOP (P < 0.05). These enhanced responses were abolished by N(G)-nitro-l-arginine methyl ester (l-NAME) or the endothelial receptor-specific antagonists atropine and HOE-140. The level of eNOS protein in the SWOP myocardium was twofold higher than that in the non-SWOP myocardium. Nitrite production in response to the ACE inhibitors was greater in microvessels from SWOP. These effects were blocked by l-NAME, HOE-140, or dichloroisocoumarin (which inhibits kinin formation). We found that a brief ischemic episode induced delayed, enhanced NO production in coronary microvessels and an upregulation of eNOS protein. These findings suggest that eNOS is a mediator during the SWOP. The ability of ACE inhibitors to enhance NO release during the SWOP points to an additional clinical application for these drugs.
A 59-year-old male was admitted through the emergency room after falling from a ladder at a height of 12 feet. He sustained multiple fractures including a complicated proximal humeral and radial fracture. His cardiovascular physical examination was significant for a 2/4 diastolic murmur. His admission ECG (Figure 1) showed sinus rhythm with a heart rate of 59 bpm, first degree atrioventricular block and premature atrial contractions. His portable chest x-ray ( Figure 2) was significant for cardiomegaly, multiple rib fractures, and multiple calcifications projecting over the cardiac silhouette. Because of these abnormal findings and in preparation for his orthopedic surgery, the patient underwent a transthoracic echocardiogram, which revealed a massively enlarged aortic root with large sinuses of Valsalva aneurysms measuring Ϸ10 cm in diameter (Figure 3). Moderate to severe aortic regurgitation was present, and left ventricular function was normal. The patient was further evaluated by computerized tomography of the ascending aorta ( Figure 4A and 4B). This imaging modality further confirmed the findings in the echocardiogram. The presence of a layered thrombus was also noted within the dilated sinuses. Because of these features, the coronary arterial anatomy was not reliably imaged.Further investigation revealed a previous aortogram done 3 years previously at a different institution where the patient presented with complaints of mild nonexertional chest discomfort that later subsided. This previous study revealed similar findings of a dilated aortic root that already existed at
Metabolic Syndrome (MeS) has reached epidemic proportions among younger individuals. We sought to determine the prevalence of MeS and its influence on the risk of Acute Coronary Syndrome (ACS) in a younger patient population (≤50 years old (OR 12.67, p=0.004)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.