Light fields present a rich way to represent the 3D world by capturing the spatio-angular dimensions of the visual signal. However, the popular way of capturing light fields (LF) via a plenoptic camera presents a spatio-angular resolution tradeoff. Computational imaging techniques such as compressive light field and programmable coded aperture reconstruct full sensor resolution LF from coded projections obtained by multiplexing the incoming spatio-angular light field. Here, we present a unified learning framework that can reconstruct LF from a variety of multiplexing schemes with minimal number of coded images as input. We consider three light field capture schemes: heterodyne capture scheme with code placed near the sensor, coded aperture scheme with code at the camera aperture and finally the dual exposure scheme of capturing a focus-defocus pair where there is no explicit coding. Our algorithm consists of three stages 1) we recover the all-in-focus image from the coded image 2) we estimate the disparity maps for all the LF views from the coded image and the all-in-focus image, 3) we then render the LF by warping the all-in-focus image using disparity maps. We show that our proposed learning algorithm performs either on par with or better than the state-of-the-art methods for all the three multiplexing schemes. LF from focus-defocus pair is especially attractive as it requires no hardware modification and produces LF reconstructions that are comparable to the current state of the art learning-based view synthesis approaches from multiple images. Thus, our work paves the way for capturing full-resolution LF using conventional cameras such as DSLRs and smartphones.Index Terms-Light field resolution trade-off, compressive light field imaging, coded aperture photography, disparity based view synthesis.
Recognition tasks, such as object recognition and keypoint estimation, have seen widespread adoption in recent years. Most state-of-the-art methods for these tasks use deep networks that are computationally expensive and have huge memory footprints. This makes it exceedingly difficult to deploy these systems on low power embedded devices. Hence, the importance of decreasing the storage requirements and the amount of computation in such models is paramount. The recently proposed Lottery Ticket Hypothesis (LTH) states that deep neural networks trained on large datasets contain smaller subnetworks that achieve on par performance as the dense networks. In this work, we perform the first empirical study investigating LTH for model pruning in the context of object detection, instance segmentation, and keypoint estimation. Our studies reveal that lottery tickets obtained from Imagenet pretraining do not transfer well to the downstream tasks. We provide guidance on how to find lottery tickets with up to 80% overall sparsity on different sub-tasks without incurring any drop in the performance. Finally, we analyse the behavior of trained tickets with respect to various task attributes such as object size, frequency, and difficulty of detection.
Most countries have a high growth rate in agriculture. The agriculture sector determines the economy of each country. The value of the economy depends on agriculture. Agriculture plays an important role in the development of each country. The agriculture sector is driving growth. Most people in India depend on agriculture. They give importance to agriculture. Many people use old technology for agriculture. Population increases in the future are likely to cause food shortages. To prevent this, agriculture needs to be developed. New technologies are welcome. The state should take over the agriculture sector. The state should take up agriculture. The agriculture sector needs to be developed so as not to cause loss to the farmers. Farmers should be given more concessions. New technologies should be introduced to agriculture. Introduction of automatic operating machinery. Solar powered machines should be introduced. The machine buys energy from the sun and converts it into energy. The machine sprinkles the seeds at specified intervals. Automatically pit. Once the seeds are sprayed, they will automatically cover the excavated area. All of these will work automatically. This reduces time and reduces cost. Increasing the savings. The need for human beings decreases. The agricultural sector is booming and the economy is booming. Increasing the value and growth of the economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.