Ionic transport through nanofluidic systems is a problem of fundamental interest in transport physics and has broad relevance in desalination, fuel cells, batteries, filtration, and drug delivery. When the dimension of the fluidic system approaches the size of molecules in solution, fluid properties are not homogeneous and a departure in behavior is observed with respect to continuum-based theories. Here we present a systematic study of the transport of charged and neutral small molecules in an ideal nanofluidic platform with precise channels from the sub-microscale to the ultra-nanoscale (<5 nm). Surprisingly, we find that diffusive transport of nano-confined neutral molecules matches that of charged molecules, as though the former carry an effective charge. Further, approaching the ultra-nanoscale molecular diffusivities suddenly drop by up to an order of magnitude for all molecules, irrespective of their electric charge. New theoretical investigations will be required to shed light onto these intriguing results.
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.
Nanoparticles and their derivatives have engendered significant recent interest. Despite considerable advances in nanofluidic physics, control over nanoparticle diffusive transport, requisite for a host of innovative applications, has yet to be demonstrated. In this study, we performed diffusion experiments for negatively and positively charged fullerene derivatives (dendritic fullerene-1, DF-1, and amino fullerene, AC60) in 5.7 and 13 nm silicon nanochannels in solutions with different ionic strengths. With DF-1, we demonstrated a gated diffusion whereby precise and reproducible control of the dynamics of the release profile was achieved by tuning the gradient of the ionic strength within the nanochannels. With AC60, we observed a near-surface diffusive transport that produced release rates that were independent of the size of the nanochannels within the range of our experiments. Finally, through theoretical analysis we were able to elucidate the relative importance of physical nanoconfinement, electrostatic interactions, and ionic strength heterogeneity with respect to these gated and near-surface diffusive transport phenomena. These results are significant for multiple applications, including the controlled administration of targeted nanovectors for therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.