Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations.Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders.However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio. Deep learning approaches, although widely applied for medical image analysis, have not been extensively used for glaucoma assessment due to the limited size of the available data sets. Furthermore, the lack of a standardize benchmark strategy makes difficult to compare existing methods in a uniform way. In order to overcome these issues we set up the Retinal Fundus Glaucoma Challenge, REFUGE (https://refuge.grand-challenge.org), held in conjunction with MICCAI 2018. The challenge consisted * Corresponding authors: Yanwu Xu (ywxu@ieee.org) and Xiulan Zhang (
Image segmentation is a primary task in many medical applications. Recently, many deep networks derived from U-Net has been extensively used in various medical image segmentation tasks. However, in most of the cases, networks similar to U-net produce coarse and non-smooth segmentations with lots of discontinuities. To improve and refine the performance of U-Net like networks, we propose the use of parallel decoders which along with performing the mask predictions also perform contour prediction and distance map estimation. The contour and distance map aid in ensuring smoothness in the segmentation predictions. To facilitate joint training of three tasks, we propose a novel architecture called Psi-Net with a single encoder and three parallel decoders (thus having a shape of Ψ), one decoder to learn the segmentation mask prediction and other two decoders to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and the boundary information. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative Log Likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.
Machine learning and especially deep learning have garnered tremendous popularity in recent years due to their increased performance over other methods. The availability of large amount of data has aided in the progress of deep learning. Nevertheless, deep learning models are opaque and often seen as black boxes. Thus, there is an inherent need to make the models interpretable, especially so in the medical domain. In this work, we propose a locally interpretable method, which is inspired by one of the recent tools that has gained a lot of interest, called local interpretable model-agnostic explanations (LIME). LIME generates single instance level explanation by artificially generating a dataset around the instance (by randomly sampling and using perturbations) and then training a local linear interpretable model. One of the major issues in LIME is the instability in the generated explanation, which is caused due to the randomly generated dataset. Another issue in these kind of local interpretable models is the local fidelity. We propose novel modifications to LIME by employing an autoencoder, which serves as a better weighting function for the local model. We perform extensive comparisons with different datasets and show that our proposed method results in both improved stability, as well as local fidelity.
Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this work, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labelled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset.To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets-ORIGA, RIMONEr3 and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.