Biological markers are necessary for predicting prognosis of salivary malignancies and better understanding the pathogenesis of salivary cancer. We analysed terminal deoxynucleotidyl transferase (TdT)-mediated biotinylated deoxyuridine-triphosphate (dUTP)-biotin nick-end labelling (TUNEL), p53 and Ki67 expression in 66 patients with malignant salivary tumours by immonohistochemistry, and correlated the data with survival, disease-free survival, tumour grade, stage, and local and distant metastasis. TUNEL efficiently predicted poor prognosis in salivary malignancies. The 5-year (5Y) survival probability dropped significantly with the level of TUNEL staining (from 83% in negatively stained tumours to 57 and 24% in TUNEL positively stained levels 1 and 2, respectively), (P ¼ 0.042). Extensive Ki67 staining (in addition to TUNEL) reduced the 5Y-survival rate even further and addition of positively stained p53 dropped the 5Y-survival rate to 0. The correlation rates between TUNEL and Ki67 was 58% (P ¼ 0.0001), and between TUNEL and p53 it was 50% (P ¼ 0.035). Concurrently, TUNEL correlated with metastasis, extracapsular spread, grade and stage. The correlation between TUNEL, p53 and Ki67 staining and survival probabilities, and the pathological grade, stage and metastasis spread of salivary malignancies makes this a highly effective tool in patient follow-up and prognosis.
Achieving safe and readily accessible sources for cell replacement therapy in Parkinson’s disease (PD) is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC) was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.
Human oral mucosa stem cells (hOMSC) are a recently described neural crest-derived stem cell population. Therapeutic quantities of potent hOMSC can be generated from small biopsies obtained by minimally invasive procedures. Our objective was to evaluate the potential of hOMSC to differentiate into astrocyte-like cells and provide peripheral neuroprotection. We induced hOMSC differentiation into cells showing an astrocyte-like morphology that expressed characteristic astrocyte markers as glial fibrillary acidic protein, S100β, and the excitatory amino acid transporter 1 and secreted neurotrophic factors (NTF) such as brain-derived neurotrophic factor, vascular endothelial growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1. Conditioned medium of the induced cells rescued motor neurons from hypoxia or oxidative stress in vitro, suggesting a neuroprotective effect mediated by soluble factors. Given the neuronal support (NS) ability of the cells, the differentiated cells were termed hOMSC-NS. Rats subjected to sciatic nerve injury and transplanted with hOMSC-NS showed improved motor function after transplantation. At the graft site we found the transplanted cells, increased levels of NTF, and a significant preservation of functional neuromuscular junctions, as evidenced by colocalization of α-bungarotoxin and synaptophysin. Our findings show for the first time that hOMSC-NS generated from oral mucosa exhibit neuroprotective effects in vitro and in vivo and point to their future therapeutic use in neural disorders.
There is a marked difference in the injured children population with an increase incidence in the Arab child population and children under the age of 6.
Background and objective Regeneration of large bony defects is an unmet medical need. The therapeutic effect of fully developed bony constructs engineered in vitro from mineralized scaffold and adult stem cells is hampered by deficient long‐term graft integration. The purpose of the present study was to investigate the regenerative capacity of a bony primordial construct consisting of human oral mucosa stem cells (hOMSC)‐derived osteoprogenitors and absorbable Gelfoam® sponges. Methods Gingiva and alveolar mucosa‐derived hOMSC were differentiated into osteoprogenitors (Runx2 and osterix positive) and loaded into Gelfoam® sponges to generate primordial hOMSC constructs. These were implanted into critical size calvaria defects in the rat. Defects treated with human dermal fibroblasts (HDF) constructs; Gelfoam® sponges and untreated defects served as controls. Results After 120‐day post‐implantation defects treated with hOMSC constructs, HDF constructs and gelatin and untreated defects exhibited 86%, 30%, 21%, and 9% of new bone formation, respectively. Immunofluorescence analysis for human nuclear antigen (HNA), bone sialoprotein (BSP), and osteocalcin (OCN) revealed viable hOMSC‐derived osteoblasts and osteocytes that formed most of the cell population of the newly formed bone at 30 and 120 days post surgery. Few HNA‐positive HDF that were negative for BSP and OCN were identified together with inflammatory cells in the soft tissue adjacent to new bone formation only at 30 days post implantation. Conclusion Collectively, the results demonstrate that primordial in vitro engineered constructs consisting of hOMSC‐derived osteoprogenitors and absorbable gelatin almost completely regenerate critical size defects in an immunocompetent xenogeneic animal by differentiating into functional osteoblasts that retain the immunomodulatory ability of naïve hOMSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.