Zika virus (ZIKV) infection is endemic to several world regions, and many others are at high risk for seasonal outbreaks. Synthetic DNA-encoded monoclonal antibody (DMAb) is an approach that enables in vivo delivery of highly potent mAbs to control infections. We engineered DMAb-ZK190, encoding the mAb ZK190 neutralizing antibody, which targets the ZIKV E protein DIII domain. In vivo -delivered DMAb-ZK190 achieved expression levels persisting >10 weeks in mice and >3 weeks in non-human primate (NHPs), which is protective against ZIKV infectious challenge. This study is the first demonstration of infectious disease control in NHPs following in vivo delivery of a nucleic acid-encoded antibody, supporting the importance of this new platform.
Shigella spp., the bacteria responsible for shigellosis, are one of the leading causes of diarrheal morbidity and mortality amongst children. There is a pressing need for the development of novel therapeutics, as resistance of Shigella to many currently used antibiotics is rapidly emerging. This paper describes the development of robust in vitro and in vivo tools to study antibiotic efficacy against Shigella flexneri. A novel bioluminescent S. flexneri strain (S. flexneri lux1) was generated, which can be used in a mammalian epithelial cell co-culture assay to evaluate antibiotic intracellular and extracellular efficacy. In addition, the S. flexneri lux1 strain was used with an intraperitoneal (IP) murine model of shigellosis to test the efficacy of ciprofloxacin and ampicillin. Both antibiotics significantly reduced the observed radiance from the gastrointestinal tissue of infected mice compared to vehicle control. Furthermore, plated gastrointestinal tissue homogenate confirmed antibiotic treatment significantly reduced the S. flexneri infection. However, in contrast to the results generated with tissue homogenate, the radiance data was not able to distinguish between the efficacy of ampicillin and ciprofloxacin. Compared to traditional methods, these models can be utilized for efficient screening of novel antibiotics aiding in the discovery of new treatments against shigellosis.
Background Diagnosis of invasive candidiasis (IC) relies on insensitive cultures; the relative utility of fungal biomarkers in children is unclear. Methods This multinational observational cohort study enrolled patients aged >120 days and <18 years with concern for IC from 1 January 2015 to 26 September 2019 at 25 centers. Blood collected at onset of symptoms was tested using T2Candida, Fungitell (1→3)-β-D-glucan, Platelia Candida Antigen (Ag) Plus, and Platelia Candida Antibody (Ab) Plus assays. Operating characteristics were determined for each biomarker, and assays meeting a defined threshold considered in combination. Sterile site cultures were the reference standard. Results Five hundred participants were enrolled at 22 centers in 3 countries, and IC was diagnosed in 13 (2.6%). Thirteen additional blood specimens were collected and successfully spiked with Candida species, to achieve a 5.0% event rate. Valid T2Candida, Fungitell, Platelia Candida Ag Plus, and Platelia Candida Ab Plus assay results were available for 438, 467, 473, and 473 specimens, respectively. Operating characteristics for T2Candida were most optimal for detecting IC due to any Candida species, with results as follows: sensitivity, 80.0% (95% confidence interval, 59.3%–93.2%), specificity 97.1% (95.0%–98.5%), positive predictive value, 62.5% (43.7%–78.9%), and negative predictive value, 98.8% (97.2%–99.6%). Only T2Candida and Platelia Candida Ag Plus assays met the threshold for combination testing. Positive result for either yielded the following results: sensitivity, 86.4% (95% confidence interval, 65.1%– 97.1%); specificity, 94.7% (92.0%–96.7%); positive predictive value, 47.5% (31.5%–63.9%); and negative predictive value, 99.2% (97.7%–99.8%). Conclusions T2Candida alone or in combination with Platelia Candida Ag Plus may be beneficial for rapid detection of Candida species in children with concern for IC. Clinical Trials Registration NCT02220790.
Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co‐infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng‐Ct co‐infections. Development of a safe, effective, and inexpensive dual therapy for Ng‐Ct co‐infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X‐ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high‐throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.
Diarrhoea remains one of the leading causes of childhood mortality globally. Recent epidemiological studies conducted in low-middle income countries (LMICs) identified Shigella spp. as the first and second most predominant agent of dysentery and moderate diarrhoea, respectively. Antimicrobial therapy is often necessary for Shigella infections; however, we are reaching a crisis point with efficacious antimicrobials. The rapid emergence of resistance against existing antimicrobials in Shigella spp. poses a serious global health problem. Here, aiming to identify alternative antimicrobial chemicals with activity against multi-drug resistant (MDR) Shigella, we initiated a collaborative academia-industry drug discovery project, applying high throughput phenotypic screening across broad chemical diversity. We identified several suitable compounds with antibacterial activity against Shigella. These compounds included the oral carbapenem tebipenem, which was found to be highly potent against broadly susceptible Shigella and contemporary MDR variants. Additional in vitro screening demonstrated that tebipenem had activity against a wide range of other non-Shigella enteric bacteria. Cognisant of the risk for the development of resistance against monotherapy, we identified synergistic behaviour of two different drug combinations incorporating tebipenem. The orally bioavailable prodrug (tebipenem pivoxil) effectively cleared the gut of infecting organisms when administered in physiological doses to Shigella-infected mice and gnotobiotic piglets. Our data highlight the utility of broad compound screening for tackling the emerging antimicrobial resistance crisis and shows that tebipenem pivoxil (licenced for paediatric respiratory tract infections in Japan) could be repurposed as an effective treatment for severe diarrhoea caused by MDR Shigella and other enteric pathogens in LMICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.