Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a , Polr1c , and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis–Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.
Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.
Ribosomal RNA (rRNA) transcription by RNA Polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies which frequently affect craniofacial development. Here, we present a cellular and molecular mechanism to explain the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCC), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCC particulalry sensitive to rRNA synthesis defects. Underpinning these findings, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which causes an imbalance between rRNA and ribosomal proteins. This leads to increased ribosomal protein binding to Mdm2 and concomitantly diminished Mdm2 binding to p53. Consequently, p53 protein accumulates, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbates the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins Syndrome and Acrofacial Dysostosis Cincinnati Type. Our novel results therefore demonstrate the dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of craniofacial congenital diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.