Abstract:The concentrations of heavy metals (As, Hg, Cr, Pb and Zn) were measured in the macroalgae, macrobenthos and fish from the Tanzanian coastal marine environment in order to ascertain the biomagnification using stable isotopes of C and N. Macroalgae samples from the central marine areas of the Tanzanian coast had higher mean concentrations of Hg (0.17 ± 0.01 µg/g) and Cr (23.7 ± 4.15 µg/g) compared to other locations. Higher concentration of Hg (0.06 ± 0.02 µg/g) was detected in the Ulva fasciata close to the Msimbazi Creek in Dar es Salaam, whereas the highest concentration of Cr (45.5 ± 6.83 µg/g) was found in Ulva petrusa near Dar es Salaam port. The crab Portunus pelagicus collected from Pangani river estuary contained 411.5 ± 13.04 µg/g of Zn. The other metals were uniformly distributed in macrobenthos from the entire coast. Mercury and lead in the biota were found to biomagnify along the Arius dussumieri and Lethrinus lentjan food chains as suggested by the significant positive relationships between log-pollutant concentrations in fish muscle tissues vs. δ 15 N signatures. Zinc in muscle tissues was found to be transferred along the food webs although no biomagnification was observed. Arsenic and chromium were found to decrease with the rise of the trophic position. Metal concentrations in macroalgae, macrobenthos and fish were compared with quality guidelines values by FAO (Food and Agricultural Organization) in 1983 and they all were below permissible limits for human consumption.
The present study investigated the concentration and species of heavy metals As, Hg, Cr, Pb and Zn in water and As, Hg, Cr, Pb and Zn in sediments collected along the coastal marine areas of Tanzania so as to determine their behaviour and remobilization potential in the environment and the degree of their availability to edible aquatic biota for monitoring purposes. Sequential extraction revealed the presence of a significant proportion of heavy metals Cr, Pb and Zn bound to available fractions of sediments. Arsenic had the highest concentration in non available residual fractions. PCA analysis found that As-Hg, Cr-Pb were strongly correlated and that the two may be derived from the same source most likely from storm water drainage of waste water discharges, while Zn may have come from the different source like watershed erosion. Further, PCA clearly confirms the same. Generally, Zn among all heavy metals analysed was the most available to aquatic biota due to its higher average concentrations in the acid soluble fraction, followed by chromium. However, high percentages of metal species studied in Tanzania coastal marine areas were found in non available fractions which indicated that the edible aquatic biota was safe for human consumptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.