This paper investigated the performance of Malaysian power plants from the year 2015 to 2017 using Malmquist Total Factor Productivity (TFP) index, which is based on Data Envelopment Analysis (DEA). This approach offers substantial advantages as compared to other existing methods as it can measure productivity changes over time for a variety of inputs and outputs. Moreover, it comprises two primary components: the technical efficiency change and the technological change indexes that provide clearer insight into the factors that are responsible for shifts in total factor productivity. This study uses a single input, installed generation capacity (MW), and two outputs, average thermal efficiency (%) and average equivalent availability factor (%). These output-input data included ten main power plants: TNB Natural Gas, SESB Natural Gas, SESB Diesel, SEB Natural Gas, SEB Coal, SEB Diesel, IPP Semenanjung Natural Gas, IPP Semenanjung Coal, IPP Sabah Natural Gas, and IPP Sabah Diesel. The results have two significant implications for fossil fuel power plants in Malaysia. First, technological change was the primary factor in boosting the TFP performance of the fossil fuel power plants in Malaysia. Meanwhile, the decline in TFP performance in Malaysian fossil fuel power plants may be attributed, in part, to a lack of innovation in technical components as the results found that the average technical efficiency changes in 2015 – 2016 were at 146% and then dropped significantly to 2% in 2016 – 2017. Second, the average scale efficiency changes rose dramatically from -53% to 3% providing a significant contribution to the improvement of technical efficiency changes. The fossil fuel power plants become efficient as the power plants’ size increases. This indicates that the size of a power plant positively impacts the performance of the TFP.
This version is available at https://strathprints.strath.ac.uk/64751/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Due to the stricter government regulations on end-of-life product treatment and the increasing public awareness towards environmental issues, remanufacturing has been a significantly growing industry over the last decades, offering many potential business opportunities. In this paper, we investigate a crucial problem apparent in this industry, the remanufacturing lot-sizing problem with separate setups. We first discuss two reformulations of this problem, and remark an important property with regards to their equivalence. Then, we present a theoretical investigation of a related subproblem, where our analysis indicates that a number of flow cover inequalities are strong for this subproblem under some general conditions. We then investigate the computational effectiveness of the alternative methods discussed for the original problem. Detailed numerical results are insightful for the practitioner, indicating that in particular when the return variability increases or when the remanufacturing setup costs decrease relevant to manufacturing setup costs, the flow covers can be very effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.