Using biodiesel in diesel engines is beneficial for reducing emissions of carbon monoxide (CO), hydrocarbons (HC) and particulate matters (PM). Biodiesel is usually produced from vegetable oils or animal fats. When produced from plant oil or woody plant sources, biodiesel can reduce a significant amount of carbon dioxide on a life cycle basis. The objective of this study is to produce biodiesel from a non-conventional woody plant source that is, crude tall oil, which is a dark brown viscous liquid extracted and processed in wood pulping plants. It contains a high percentage of fatty acids. From raw crude tall oil, tall oil fatty acids were separated and were successfully used for the production of biodiesel in this study. Although biodiesel produces lower CO, HC and PM than petroleum diesel fuel, it produces higher oxides of nitrogen (NOx) emissions in diesel engines. Water emulsifications of diesel-biodiesel blends are investigated in a direct injection (DI) diesel engine in this work to understand their potential for NOx reduction. When using 10% water in the emulsions, NOx was reduced by nearly 15%. In aldehyde emissions, B100 showed 35% lower aldehydes and B100 with 10% water emulsion produced nearly 90% lower aldehydes than diesel fuel—a substantial reduction. Therefore, this study accomplished the desired goal of producing biodiesel from a non-conventional source, which satisfies ASTM biodiesel standard and results in lower NOx and aldehydes emissions with water emulsifications of diesel-biodiesel blends in a diesel engine compared to that of diesel fuel.
Crude tall oil (CTO) is the third largest by-product at kraft pulp and paper mills. Due the large presence of value-added fatty and resin acids, CTO has a huge valorization potential as a biobased, readily available, non-food, and low-cost biorefinery feedstock. The objective of this work was to present a method for the isolation of high-value linoleic acid (LA), an omega (ω)-6 essential fatty acid, from CTO using a combination of pretreatment, fractionation, and purification techniques. Following the distillation of CTO to separate the tall oil fatty acids (TOFAs) from CTO, LA was isolated and purified from TOFAs by urea complexation (UC) and low-temperature crystallization (LTC) in the temperature range between −7 and −15 °C. The crystallization yield of LA from CTO in that range was 7.8 w/w at 95.2% purity, with 3.8% w/w of ω-6 γ-linolenic acid (GLA) and 1.0% w/w of ω-3 α-linolenic (ALA) present as contaminants. This is the first report on the isolation of LA from CTO. The approach presented here can be applied to recover other valuable fatty acids. Furthermore, once the targeted fatty acid(s) are isolated, the rest of the TOFAs can be utilized for the production of biodiesel, biobased surfactants, or other valuable bioproducts.
For years, a respective amount of PV latex has been exported from Malaysia to manufacture male contraceptives within the country. Recently, a project titled as ELPP, has been undertaken by the Govt. Pharmaceutical Company Essential Drugs Company Ltd? to pioneer the implementation of processing natural raw latex (35-40% dry rubber content) [1] into concentrate latex (60% dry rubber content) [1] from the local resource at Modhupur region. The purpose of this project is to produce concentrate latex from local resource as the raw material for manufacturing male contraceptive instead of importing the latex from Malaysia or other countries. Several trials have been taken place to test the feasibility and productivity of the project with respect to the aspects in Bangladesh. The results and observations are found very satisfactory and the project is very much cost effective since it cuts off the foreign expense caused due to the import of concentrate latex from abroad at present days. An overall cost analysis shows that if the technology of processing concentrate latex is implemented with a proper utilization of the local resources it reduces the cost of production to a great extent. Moreover, rubber sheets produced as the byproduct from this process are very much useful and demandable in the field of rubber industries and add profit to the process. DOI: http://dx.doi.org/10.3329/jce.v27i2.17777 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 11-14
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.