Since the angiotensin-converting enzyme 2 (ACE2) protein is abundant on the surface of respiratory cells in the lungs, it has been confirmed to be the entry-point receptor for the spike glycoprotein of SARS-CoV-2. As such, gold nanorods (AuNRs) functionalized with ACE2 ectodomain (ACE2ED) act not only as decoys for these viruses to keep them from binding with the ACE2-expressing cells but also as agents to ablate infectious virions through heat generated from AuNRs under near-infrared (NIR) laser irradiation. Using plasmid containing the SARS-CoV-2 spike protein gene (with a D614G mutation), spike protein pseudotyped viral particles with a lentiviral core and green fluorescent protein reporter were constructed and used for transfecting ACE2-expressing HEK293T cells. Since these viral particles behave like their coronavirus counterparts, they are the ideal surrogates of native virions for studying viral entry into host cells. Our results showed that, once the surrogate pseudoviruses with spike protein encounter ACE2ED-tethered AuNRs, these virions are entrapped, resulting in decreased viral infection to ACE2-expressing HEK293T cells. Moreover, the effect of photothermolysis created by ACE2ED-tagged AuNRs under 808-nm NIR laser irradiation for 5 min led to viral breakdown. In summary, ACE2ED-tethered AuNRs with dual functions (virus decoy and destruction) could have an intriguing advantage in the treatment of diseases involving rapidly mutating viral species such as SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.