Vasopressin (VP) secreted from parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) stimulates pituitary ACTH secretion, through interaction with receptors of the V1b subtype (V1bR) in the pituitary corticotroph, mainly by potentiating the stimulatory effects of corticotrophin releasing hormone (CRH). Chronic stress paradigms associated with corticotroph hyperresponsiveness lead to preferential expression of hypothalamic VP over CRH and upregulation of pituitary V1bR, suggesting that VP has a primary role during adaptation of the hypothalamic pituitary adrenal (HPA) axis to long-term stimulation. However, studies using pharmacological of genetic ablation of V1b receptors have shown that VP is required for full ACTH responses to some stressors, but not for the sensitization of ACTH responses to a novel stress observed during chronic stress. Studies using minipump infusion of a peptide V1 antagonist in long-term adrenalectomized rats have revealed that VP mediates proliferative responses in the pituitary. Nevertheless, only a minor proportion of cells undergoing mitogenesis co-express markers for differentiated corticotrophs or precursors, suggesting that new corticotrophs are recruited from yet undifferentiated cells. The overall evidence supports a limited role of VP regulating acute ACTH responses to some acute stressors and points to cell proliferation and pituitary remodeling as alternative roles for the marked increases in parvocellular vasopressinergic activity during prolonged activation of the HPA axis.
Both human linkage studies and MC3R knockout mouse models suggest that the MC3R may play an important role in energy homeostasis. Here we show that among 355 overweight and nonoverweight children, 8.2% were double homozygous for a pair of missense MC3R sequence variants (Thr6Lys and Val81Ile). Such children were significantly heavier (BMI and BMI SD score: P < 0.0001), had more body fat (body fat mass and percentage fat mass: P < 0.001), and had greater plasma leptin (P < 0.0001) and insulin concentrations (P < 0.001) and greater insulin resistance (P < 0.008) than wild-type or heterozygous children. Both sequence variants were more common in African-American than Caucasian children. In vitro expression studies found the double mutant MC3R was partially inactive, with significantly fewer receptor binding sites, decreased signal transduction, and less protein expression. We conclude that diminished MC3R expression in this double MC3R variant may be a predisposing factor for excessive body weight gain in children.
1. Increasing evidence indicates that guanyl protein coupled receptors (GPCRs), including members of the vasopressin (VP) receptor family can act as homo- and heterodimers. Regulated expression and interaction of pituitary VP V1b receptor (V1bR) and corticotropin releasing hormone receptor type 1 (CRHR1) are critical for hypothalamic pituitary adrenal (HPA) axis adaptation, but it is unknown whether this involves physical interaction between these receptors.2. Bioluminescence resonance energy transfer (BRET) experiments using V1bR and CRHR1 fused to either Renilla luciferase (Rluc) or yellow fluorescent protein (YFP) at the N-terminus, but not the carboxyl-terminus, revealed specific interaction (BRET(50) = 0.39 +/- 0.08, V1bR) that was inhibited by untagged V1b or CRHR1 receptors, suggesting homo- and heterodimerization. The BRET data were confirmed by coimmunoprecipitation experiments using fully bioactive receptors tagged at the aminoterminus with c-myc and Flag epitopes, demonstrating specific homodimerization of the V1b receptor and heterodimerization of the V1b receptor with CRHR1 receptors.3. Heterodimerization between V1bR and CRHR1 is not ligand dependent since stimulation with CRH and AVP had no effect on coimmunoprecipitation. In membranes obtained from cells cotransfected with CRHR1 and V1bR, incubation with the heterologous nonpeptide antagonist did not alter the binding affinity or capacity of the receptor.4. The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.
The hypothesis that vasopressin (VP) becomes the main mediator of pituitary corticotroph responsiveness during chronic hypothalamic pituitary adrenal (HPA) activation, was tested by examining the effect of pharmacologic VP receptor blockade on the ACTH and corticosterone responses of 14-day repeatedly restrained rats. In spite of the increased vasopressinergic activity, repeatedly restrained rats showed lower ACTH and corticosterone responses to 10 min white noise compared with handled controls. These responses were unchanged by the non-peptide selective V1b receptor antagonist, SSR149415, i.v., 1h before noise application. In contrast to noise stress, plasma ACTH responses to i.p. hypertonic saline injection were enhanced in the repeatedly restrained rats compared with handled controls but responses were also unaffected by SSR149415 administered orally, daily 1 h before restraint. Since SSR149415 effectiveness was low, we used minipump infusion of the peptide V1 receptor antagonist, dGly[Phaa1,D-Tyr(et), Lys, Arg]VP (V1-Ant) for 14 days, which effectively blocked ACTH responses to exogenous VP. Chronic V1-Ant infusion reduced plasma ACTH responses to i.p. hypertonic saline in handled controls but not in repeatedly restrained rats. These data suggest that the increased vasopressinergic activity characteristic of chronic stress plays roles other than mediating the hypersensitivity of the HPA axis to a novel stress.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.