Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
BackgroundAlthough a number of clinical and preclinical studies have demonstrated analgesic effects of cannabinoid treatments, there are also instances when cannabinoids have had no effect or even exacerbated pain. The observed pro-nociceptive effects appear to be due to cannabinoid-induced disinhibition of afferent synaptic input to nociceptive circuits. To better understand how cannabinoid-mediated plasticity can have both pro- and anti-nociceptive effects, we examined the possibility that cannabinoids differentially modulate nociceptive vs. non-nociceptive synapses onto a shared postsynaptic target. These experiments were carried out in the central nervous system (CNS) of the medicinal leech, in which it is possible to intracellularly record from presynaptic nociceptive (N-cell) or pressure-sensitive (P-cell) neurons and their shared postsynaptic targets.ResultsThe endocannabinoid 2-arachidonoyl glycerol (2AG) elicited significant long-lasting depression in nociceptive (N-cell) synapses. However, non-nociceptive (P-cell) synapses were potentiated following 2AG treatment. 2AG-induced potentiation of non-nociceptive synapses was blocked by the TRPV antagonist SB366791, suggesting involvement of the same TRPV-like receptor that has already been shown to mediate endocannabinoid-dependent depression in nociceptive inputs. Treatment with the GABA receptor antagonist bicuculline also blocked 2AG-induced potentiation, consistent with the idea that increased synaptic signaling was the result of endocannabinoid-mediated disinhibition. Interestingly, while bicuculline by itself increased non-nociceptive synaptic transmission, nociceptive synapses were depressed by this GABA receptor antagonist indicating that nociceptive synapses were actually excited by GABAergic input. Consistent with these observations, GABA application depolarized the nociceptive afferent and hyperpolarized the non-nociceptive afferent.ConclusionsThese findings show that endocannabinoids can differentially modulate nociceptive vs. non-nociceptive synapses and that GABAergic regulation of these synapses plays an important role in determining whether endocannabinoids have a potentiating or depressing effect.
Endocannabinoids (eCBs) play an important role in long-term regulation of synaptic signaling in both vertebrates and invertebrates. In this study, the role of transcription- and translation-dependent processes in pre- versus post-synaptic neurons was examined during eCB-mediated synaptic plasticity in the central nervous system (CNS) of the leech. Low frequency stimulation (LFS) of non-nociceptive afferents elicits eCB-dependent long-term depression (eCB-LTD) heterosynaptically in nociceptive synapses that lasts at least 2 hrs. Bath application of emetine, a protein synthesis inhibitor, blocked eCB-LTD following afferent LFS or exogenous eCB application, indicating that this depression was translation-dependent. Bath application of actinomycin D, an irreversible RNA synthesis inhibitor, or DRB, a reversible RNA synthesis inhibitor, also prevented eCB-LTD. Selective injection of DRB or emetine into the pre- or postsynaptic neuron prior to LFS indicated that eCB-LTD required transcription/translation in the postsynaptic neuron, but only translation in the presynaptic cell. Depression observed immediately following LFS was also blocked when these transcription- and translation-dependent processes were inhibited. It is proposed that induction of eCB-LTD in this nociceptive synapse requires the coordination of presynaptic protein synthesis and postsynaptic mRNA and protein synthesis. These findings provide significant insights into both eCB-based synaptic plasticity and understanding how activity in non-nociceptive afferents modulates nociceptive pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.