Self-healing polymers and fiber-reinforced polymer composites possess the ability to heal in response to damage wherever and whenever it occurs in the material. This phenomenal material behavior is inspired by biological systems in which self-healing is commonplace. To date, self-healing has been demonstrated by three conceptual approaches: capsule-based healing systems, vascular healing systems, and intrinsic healing polymers. Self-healing can be autonomic—automatic without human intervention—or may require some external energy or pressure. All classes of polymers, from thermosets to thermoplastics to elastomers, have potential for self-healing. The majority of research to date has focused on the recovery of mechanical integrity following quasi-static fracture. This article also reviews self-healing during fatigue and in response to impact damage, puncture, and corrosion. The concepts embodied by current self-healing polymers offer a new route toward safer, longer-lasting, fault-tolerant products and components across a broad cross section of industries including coatings, electronics, transportation, and energy.
Self-healing of an electrical circuit is demonstrated with nearly full recovery of conductance less than one millisecond after damage. Crack damage breaks a conductive pathway in a multilayer device, interrupting electron transport and simultaneously rupturing adjacent microcapsules containing gallium-indium liquid metal (top). The released liquid metal flows to the area of damage, restoring the conductive pathway (bottom).
The orientation of force-sensitive chemical species (mechanophores) in bulk polymers was measured via the anisotropy of fluorescence polarization. Orientation measurements were utilized to investigate the role of mechanophore alignment on mechanically driven chemical reactions. The mechanophore, spiropyran (SP), was covalently bonded into the backbone of poly(methyl acrylate) (PMA) and poly(methyl methacrylate) (PMMA) polymers. Under UV light or tensile force, SP reacts to a merocyanine (MC) form, which exhibits a strong fluorescence, polarized roughly across the long axis of the MC subspecies. An order parameter was calculated, based on the anisotropy of fluorescence polarization, to characterize the orientation of the MC subspecies relative to tensile force. For UV-activated SP-linked PMA samples, the order parameter increased with applied strain, up to an order parameter of approximately 0.5. Significantly higher order parameters were obtained for mechanically activated SP-linked PMA samples, indicating preferential mechanochemical activation of species oriented in the tensile direction. The anisotropy of fluorescence polarization in SP-linked PMMA also provided insight on polymer drawing and polymer relaxation at failure.
Simultaneous measurements of mechanical response, optical birefringence, and fluorescence signal are acquired in situ during tensile testing of a mechanophore‐linked elastomeric polymer. Mechanical stress, deformation, and polymer chain alignment are correlated with force‐induced chemical reaction of the mechanophore. The mechanochemically responsive polymer under investigation is spiropyran‐ (SP‐) linked poly(methyl acrylate) (PMA). Force‐driven conversion (activation) of SP to its merocyanine (MC) form is indicated by the emergence of a fluorescence signal with 532 nm light incident on the sample. Increasing rate of tensile deformation leads to an increase in both stress and SP‐to‐MC conversion, indicating a positive correlation between macroscopic stress and activation. Simultaneously collected birefringence measurements reveal that rapid mechanophore activation occurs when maximum polymer chain alignment is reached. It is found that SP‐to‐MC conversion in PMA requires both a sufficient level of stress and adequate orientation of the polymer chains in the direction of applied force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.