In recent years, education institutions have offered a wide range of course selections with overlaps. This presents significant challenges to students in selecting successful courses that match their current knowledge and personal goals. Although many studies have been conducted on Recommender Systems (RS), a review of methodologies used in course RS is still insufficiently explored. To fill this literature gap, this paper presents the state of the art of methodologies used in course RS along with the summary of the types of data sources used to evaluate these techniques. This review aims to recognize emerging trends in course RS techniques in recent research literature to deliver insights for researchers for further investigation. We provide a systematic review process followed by research findings on the current methodologies implemented in different course RS in selected research journals such as: collaborative, content-based, knowledge-based, Data Mining (DM), hybrid, statistical and Conversational RS (CRS). This study analyzed publications between 2016 and June 2020, in three repositories; IEEE Xplore, ACM, and Google Scholar. These papers were explored and classified based on the methodology used in recommending courses. This review has revealed that there is a growing popularity in hybrid course RS and followed by DM techniques in recent publications. However, few CRS-based course RS were present in the selected publications. Finally, we discussed future avenues based on the research outcome, which might lead to next-generation course RS.
This paper offers a review of different types of Error Correction Scheme (ECS) used in communication systems in general, which is followed by a summary of the IEEE standard for Wireless Body Area Network (WBAN). The possible types of channels and network models for WBAN are presented that are crucial to the design and implementation of ECS. Following that, a literature review on the proposed ECSs for WBAN is conducted based on different aspects. One aspect of the review is to examine what type of parameters are considered during the research work. The second aspect of the review is to analyse how the reliability is measured and whether the research works consider the different types of reliability and delay requirement for different data types or not. The review indicates that the current literatures do not utilize the constraints that are faced by WBAN nodes during ECS design. Subsequently, we put forward future research challenges and opportunities on ECS design and the implementation for WBAN when considering computational complexity and the energy-constrained nature of nodes.
Due to the ease of development and inexpensiveness, indoor localization systems are getting a significant attention but, with recent advancement in context and location aware technologies, the solutions for indoor tracking and localization had become more critical. Ranging methods play a basic role in the localization system, in which received signal strength indicator-(RSSI-) based ranging technique gets the most attraction. To predict the position of an unknown node, RSSI measurement is an easy and reliable method for distance estimation. In indoor environments, the accuracy of the RSSI-based localization method is affected by strong variation, specially often containing substantial amounts of metal and other such reflective materials that affect the propagation of radio-frequency signals in nontrivial ways, causing multipath effects, dead spots, noise, and interference. This paper proposes an adaptive smoother based location and tracking algorithm for indoor positioning by making fusion of RSSI and link quality indicator (LQI), which is particularly well suited to support context aware computing. The experimental results showed that the proposed mathematical method can reduce the average error around 25%, and it is always better than the other existing interference avoidance algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.