Evolutionary algorithms provide gradient-free optimisation which is beneficial for models that have difficulty in obtaining gradients; for instance, geoscientific landscape evolution models. However, such models are at times computationally expensive and even distributed swarm-based optimisation with parallel computing struggle. We can incorporate efficient strategies such as surrogate-assisted optimisation to address the challenges; however, implementing inter-process communication for surrogate-based model training is difficult. In this paper, we implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture. We first test the framework on a set of benchmark optimisation problems and then apply to a geoscientifc model that features landscape evolution model. Our results demonstrate very promising results for benchmark functions and the Badlands landscape evolution model. We obtain a reduction in computationally time while retaining optimisation solution accuracy through the use of surrogates in a parallel computing environment. The major contribution of the paper is in the application of surrogate-based optimisation for geoscientific models which can in the future help in better understanding of paleoclimate and geomorphology.
Advances in parallel and distributed computing have enabled efficient implementation of distributed swarm and evolutionary algorithms for complex and computationally expensive models. Evolutionary algorithms provide gradient-free optimisation which is beneficial for models that do not have such information available, for instance geoscientific landscape evolution models. However, such models are so computationally expensive that even distributed swarm and evolutionary algorithms with the power of parallel computing struggle. We need to incorporate efficient strategies such as surrogate assisted optimisation that further improves their performance; however this becomes a challenge given parallel processing and inter-process communication for implementing surrogate training and prediction. In this paper, we implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture. Our results demonstrate very promising results for benchmark functions and geoscientific landscape evolution models. We obtain reduction in computationally time while retaining optimisation solution accuracy though the use of surrogates in a parallel computing environment.
Bias mitigation in machine learning models is imperative, yet challenging. While several approaches have been proposed, one view towards mitigating bias is through adversarial learning. A discriminator is used to identify the bias attributes such as gender, age or race in question. This discriminator is used adversarially to ensure that it cannot distinguish the bias attributes. The main drawback in such a model is that it directly introduces a trade-off with accuracy as the features that the discriminator deems to be sensitive for discrimination of bias could be correlated with classification. In this work we solve the problem. We show that a biased discriminator can actually be used to improve this bias-accuracy tradeoff. Specifically, this is achieved by using a feature masking approach using the discriminator's gradients. We ensure that the features favoured for the bias discrimination are de-emphasized and the unbiased features are enhanced during classification. We show that this simple approach works well to reduce bias as well as improve accuracy significantly. We evaluate the proposed model on standard benchmarks. We improve the accuracy of the adversarial methods while maintaining or even improving the unbiasness and also outperform several other recent methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.