New research into human-computer interaction seeks to consider the consumer's emotional status to provide a seamless human-computer interface. This would make it possible for people to survive and be used in widespread fields, including education and medicine. Multiple techniques can be defined through human feelings, including expressions, facial images, physiological signs, and neuroimaging strategies. This paper presents a review of emotional recognition of multimodal signals using deep learning and comparing their applications based on current studies. Multimodal affective computing systems are studied alongside unimodal solutions as they offer higher accuracy of classification. Accuracy varies according to the number of emotions observed, features extracted, classification system and database consistency. Numerous theories on the methodology of emotional detection and recent emotional science address the following topics. This would encourage studies to understand better physiological signals of the current state of the science and its emotional awareness problems.
Facial emotional processing is one of the most important activities in effective calculations, engagement with people and computers, machine vision, video game testing, and consumer research. Facial expressions are a form of nonverbal communication, as they reveal a person's inner feelings and emotions. Extensive attention to Facial Expression Recognition (FER) has recently been received as facial expressions are considered. As the fastest communication medium of any kind of information. Facial expression recognition gives a better understanding of a person's thoughts or views and analyzes them with the currently trending deep learning methods. Accuracy rate sharply compared to traditional state-of-the-art systems. This article provides a brief overview of the different FER fields of application and publicly accessible databases used in FER and studies the latest and current reviews in FER using Convolution Neural Network (CNN) algorithms. Finally, it is observed that everyone reached good results, especially in terms of accuracy, with different rates, and using different data sets, which impacts the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.