Much of the focus on explanation in the field of artificial intelligence has focused on machine learning methods and, in particular, concepts produced by advanced methods such as neural networks and deep learning. However, there has been a long history of explanation generation in the general field of constraint satisfaction, one of the AI's most ubiquitous subfields. In this paper we survey the major seminal papers on the explanation and constraints, as well as some more recent works. The survey sets out to unify many disparate lines of work in areas such as model-based diagnosis, constraint programming, Boolean satisfiability, truth maintenance systems, quantified logics, and related areas.
Interactive constraint systems often suffer from infeasibility (no solution) due to conflicting user constraints. A common approach to recover infeasibility is to eliminate the constraints that cause the conflicts in the system. This approach allows the system to provide an explanation as: "if the user is willing to drop out some of their constraints, there exists a solution". However, one can criticise this form of explanation as not being very informative. A counterfactual explanation is a type of explanation that can provide a basis for the user to recover feasibility by helping them understand which changes can be applied to their existing constraints rather than removing them. This approach has been extensively studied in the machine learning field, but requires a more thorough investigation in the context of constraint satisfaction. We propose an iterative method based on conflict detection and maximal relaxations in over-constrained constraint satisfaction problems to help compute a counterfactual explanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.