The cellular mechanisms underlying the increasing aggressiveness associated with ovarian cancer progression are poorly understood. Coupled with a lack of identification of specific markers that could aid early diagnoses, the disease becomes a major cause of cancer-related mortality in women. Here we present direct evidence that the aggressiveness of human ovarian cancer may be a result of transformation and dysfunction of stem cells in the ovary. A single tumorigenic clone was isolated among a mixed population of cells derived from the ascites of a patient with advanced ovarian cancer. During the course of the study, yet another clone underwent spontaneous transformation in culture, providing a model of disease progression. Both the transformed clones possess stem cell-like characteristics and differentiate to grow in an anchorage-independent manner in vitro as spheroids, although further maturation and tissue-specific differentiation was arrested. Significantly, tumors established from these clones in animal models are similar to those in the human disease in their histopathology and cell architecture. Furthermore, the tumorigenic clones, even on serial transplantation continue to establish tumors, thereby confirming their identity as tumor stem cells. These findings suggest that: (a) stem cell transformation can be the underlying cause of ovarian cancer and (b) continuing stochastic events of stem and progenitor cell transformation define the increasing aggression that is characteristically associated with the disease. (Cancer Res 2005; 65(8): 3025-9)
The transcriptional repressors Snail and Slug contribute to cancer progression by mediating epithelial-mesenchymal transition (EMT), which results in tumor cell invasion and metastases. We extend this current understanding to demonstrate their involvement in the development of resistance to radiation and paclitaxel. The process is orchestrated through the acquisition of a novel subset of gene targets that is repressed under conditions of stress, effectively inactivating p53-mediated apoptosis, while another subset of targets continues to mediate EMT. Repressive activities are complemented by a concurrent derepression of specific genes resulting in the acquisition of stem celllike characteristics. Such cells are bestowed with three critical capabilities, namely EMT, resistance to p53-mediated apoptosis, and a self-renewal program, that together define the functionality and survival of metastatic cancer stem cells. EMT provides a mechanism of escape to a new, less adverse niche; resistance to apoptosis ensures cell survival in conditions of stress in the primary tumor; whereas acquisition of ''stemness'' ensures generation of the critical tumor mass required for progression of micrometastases to macrometastases. Our findings, besides achieving considerable expansion of the inventory of direct genes targets, more importantly demonstrate that such elegant cooperative modulation of gene regulation mediated by Snail and Slug is critical for a cancer cell to acquire stem cell characteristics toward resisting radiotherapy-or chemotherapy-mediated cellular stress, and this may be a determinative aspect of aggressive cancer metastases.
Tumor formation involves substantial cell division and genetic instability, but the relationship between quiescent cancer stem cells (CSC) and dividing progenitors in these events is poorly understood. Likewise, the implication of aneuploid cells in solid tumors is uncertain. CSCs are postulated to contribute to tumor dormancy and present a formidable obstacle in limiting treatment outcomes for a majority of cancers, whereas the genetic heterogeneity conjured by aneuploid cells may influence tumor drug resistance. However, direct confirmation of these events remains forthcoming. In the present study, we addressed the identification of tumor dormancy in terms of isolation of therapy-refractory residual tumor cells from tumors that persist in a state of quiescence as labelretaining cells. The choices of label were PKH67/PKH26 dyes that irreversibly bind to the lipid bilayer on cell membranes and get equally partitioned among daughter cells subsequent to each cell division. Consequent characterization revealed that label-retaining cells encompass two different populations capable of remaining in a state of quiescence, i.e., stem-like cells and aneuploid cells. The former express a reversibility of quiescence through retention of functionality and also exhibit therapeutic refractoriness; the latter seem to be either quiescent or proliferation-arrested at steady-state. Subsequent to exposure to selective pressure of chemotherapy, a fraction of these cells may acquire the potential to proliferate in a drug-refractory manner and acquire stem-like characteristics. Collectively, the findings of the present study reveal that tumor-derived CSCs and aneuploid populations contribute to drug resistance and tumor dormancy in cancer progression. [Cancer Res 2009;69(24):9245-53]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.