We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nördstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four spacetime dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.
The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess non-trivial 2-cycles (bubbles). Spacetimes containing such 2-cycles can have non-zero energy, angular momenta, and charge even in the absence of horizons. A mass variation formula has been established for spacetimes containing bubbles and possibly a black hole horizon. This 'first law of black hole and soliton mechanics' contains new intensive and extensive quantities associated to each 2-cycle. We consider examples of such spacetimes for which we explicitly calculate these quantities and show how regularity is essential for the formulae relating them to hold. We also derive new explicit expressions for the angular momenta and charge for spacetimes containing solitons purely in terms of fluxes supporting the bubbles. * sdgg82@mun.ca † uh1681@mun.ca ‡ hkkunduri@mun.ca 1 arXiv:1609.08500v1 [hep-th]
We initiate the development of a horizon-based initial (or rather final) value formalism to describe the geometry and physics of the near-horizon spacetime: data specified on the horizon and a future ingoing null boundary determine the near-horizon geometry. In this initial paper we restrict our attention to spherically symmetric spacetimes made dynamic by matter fields. We illustrate the formalism by considering a black hole interacting with a) inward-falling, null matter (with no outward flux) and b) a massless scalar field. The inward-falling case can be exactly solved from horizon data. For the more involved case of the scalar field we analytically investigate the near slowly evolving horizon regime and propose a numerical integration for the general case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.