Sensors can produce large amounts of data related to products, design, and materials; however, it is important to use the right data for the right purposes. Therefore, detailed analysis of data accumulated from different sensors in production and assembly manufacturing lines is necessary to minimize faulty products and understand the production process. Additionally, when selecting analytical methods, manufacturing companies must select the most suitable techniques. This paper presents a data analytics approach to extract useful information, such as important measurements for the dimensions of a shim, a small part for aligning shafts, from the manufacturing data of a power transfer unit (PTU). This paper also identifies the best techniques and analytical approaches within the following six individual areas: (1) identifying measurements associated with faults; (2) identifying measurements associated with shim dimensions; (3) identifying associations between station codes; (4) predicting shim dimensions; (5) identifying duplicate samples in faulty data; and (6) identifying error distributions associated with measurement. These areas are analysed in accordance with two analytical approaches: (a) statistical analysis and (b) machine learning (ML)-based analysis. The results show (a) the relative importance of measurements with regard to the faulty unit and shim dimensions, (b) the error distribution of measurements, and (c) the reproduction rate of faulty units. Additionally, both statistical analysis and ML-based analysis have shown that the measurement ‘PTU housing measurement’ is the most important measurement among available shim dimensions. Additionally, certain faulty stations correlated with one another. ML is shown to be the most suitable technique in three areas (e.g. identifying measurements associated with faults), while statistical analysis is sufficient for the other three areas (e.g. identifying measurements associated with shim dimensions) because they do not require a complex analytical model. This study provides a clearer understanding of assembly line production and identifies highly correlated and significant measurements of a faulty unit.
The Digital Twin (DT) concept in the manufacturing industry has received considerable attention from researchers because of its versatile application potential. Machine Learning (ML) adds a new dimension to DT by enhancing its functionality. Many studies on DT in the manufacturing industry have recently been published. However, there is still a lack of a systematic literature review on different aspects of ML-based DT in the manufacturing industry from a bibliometric and evolutionary perspective. Therefore, the proposed study is mainly aimed at reviewing DT in the manufacturing industry to identify the contribution of ML, current methods, and future research directions. According to the findings, the contribution of ML to this domain is significant. Additionally, the results show that the latest ML technologies are being used in the DT domain; neural networks have evolved based on application-specific requirements. The total number of papers and citations per paper on ML-based DT is increasing. The relevance of ML in DT has increased over time. The current trend is to use ML-based DT for data analytics. Additionally, there are many unfilled gaps; certain gaps include industrial applications of DT, synchronisation with real-time data through sensors, heterogeneous data management, and benchmarking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.