Polymers and papers, which exhibit piezoelectricity, find a wide range of applications in the industry. Ever since the discovery of PVDF, piezo polymers and papers have been widely used for sensor and actuator design. The direct piezoelectric effect has been used for sensor design, whereas the inverse piezoelectric effect has been applied for actuator design. Piezo polymers and papers have the advantages of mechanical flexibility, lower fabrication cost and faster processing over commonly used piezoelectric materials, such as PZT, BaTiO3. In addition, many polymer and paper materials are considered biocompatible and can be used in bio applications. In the last 20 years, heterostructural materials, such as polymer composites and hybrid paper, have received a lot of attention since they combine the flexibility of polymer or paper, and excellent pyroelectric and piezoelectric properties of ceramics. This paper gives an overview of piezoelectric polymers and papers based on their operating principle. Main categories of piezoelectric polymers and papers are discussed with a focus on their materials and fabrication techniques. Applications of piezoelectric polymers and papers in different areas are also presented.
Biomedical wearable sensors enable long-term monitoring applications and provide instantaneous diagnostic capabilities. Physiological monitoring can help in both the diagnosis and the ongoing treatment of a vast number of cardiovascular and pulmonary diseases such as hypertension, dysrhythmia, and asthma. In this paper, we present a system capable of monitoring several vital signals and physiological variables that determine the cardiopulmonary activity status. We explore direct measurements of multiple vital parameters with only one sensor and without special constraints. The system employs a PZT-4 piezo transducer stimulated by a suitable analog front-end. The system both generates pulsed ultrasound waves at 1 MHz and amplifies reflected echoes to track internal organ motions, mainly that of the heart apex. According to the respiratory motion of the heart, the proposed system provides respiratory and heart cycles information. Promising results were obtained from six subjects with an average accuracy of 96.7% in heartbeats per minute (BPM) measurement, referenced to a commercial photoplethysmography sensor. It also exhibits 94.5% sensitivity and 94.0% specificity in respiration detection compared to a SPR-BTA spirometer signal as a reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.