Insulin is a polypeptide hormone mainly secreted by β cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.
This paper describes the isolation of bacteria from Bhitarkanika mangrove ecosystem of Orissa and screening for their antifungal properties against five pathogenic fungi, extracellular enzyme activity like amylase, protease and lipase, and phosphate solubilization capacity. From 567 bacterial isolates obtained, 26 bacterial isolates have exhibited wide spectrum antifungal activity against all five fungi tested. Most of the bacterial isolates were found to be amylase and protease producers. In present study, 41 lipase producers and 33 phosphate solubilisers were also found. Bacterial isolates from plant origin exhibited all the four extracellular enzyme activity except lipase. The maximum % occurrence of phosphate solubilisers was found in soil and plant system of mangrove. This screening study opens an avenue to work with some of the potent strains for useful product formation at large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.