Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Aging is defined as a complex, multifaceted degenerative process that causes a gradual decline of physiological functions and a rising mortality risk with time. Stopping senescence or even rejuvenating the body represent one of the long-standing human dreams. Somatic cell nuclear transfer as well as cell reprogramming have suggested the possibility to slow or even reverse signs of aging. We exploited miR-200 family ability to induce a transient high plasticity state in human skin fibroblasts isolated from old individuals and we investigated whether this ameliorates cellular and physiological hallmarks of senescence. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after miR-200 exposure. The results show the existence of multiple factors that cooperate to control a unique program, driving the cell clock. In particular, miR-200 family directly regulates the molecular mechanisms erasing cell senescence. However, this effect is transient, reversible, and quickly lost. On the other hand, the use of an adequate young microenvironment stabilizes the miR-200-mediated rejuvenating effects, suggesting that synergistic interactions occur among molecular effectors and ECM-derived biomechanical stimuli. The model here described is a useful tool to better characterize these complex regulations and to finely dissect the multiple and concurring biochemical and biomechanical cues driving the cell biological clock. Graphical Abstract
We here present a method that combines the use of chemical epigenetic erasing with mechanosensing-related cues to efficiently generate mammalian pluripotent cells, without the need of gene transfection or retroviral vectors. This strategy is, therefore, promising for translational medicine and represents a notable advancement in stem cell organoid technology.
The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.
Purpose This study is to develop a new protocol that combines the use of epigenetic cues and mechanical stimuli to assemble 3D spherical structures, arbitrarily defined “epiBlastoids,” whose phenotype is remarkably similar to natural embryos. Methods A 3-step approach is used to generate epiBlastoids. In the first step, adult dermal fibroblasts are converted into trophoblast (TR)-like cells, combining the use of 5-azacytidine, to erase the original phenotype, with an ad hoc induction protocol, to drive cells towards TR lineage. In the second step, epigenetic erasing is applied once again, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like organoids. Specifically, erased cells are encapsulated into micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, TR-like cells are co-cultured with ICM-like spheroids in the same micro-bioreactors. Subsequently, the newly generated embryoids are transferred to microwells to favor epiBlastoid formation. Results Adult dermal fibroblasts are successfully readdressed towards TR lineage. Cells subjected to epigenetic erasing and encapsulated into micro-bioreactors rearrange in 3D ICM-like structures. Co-culture of TR-like cells and ICM-like spheroids into micro-bioreactors and microwells induces the formation of single structures with uniform shape reminiscent in vivo embryos. CDX2+ cells localized in the out layer of the spheroids, while OCT4+ cells in the inner of the structures. TROP2+ cells display YAP nuclear accumulation and actively transcribed for mature TR markers, while TROP2− cells showed YAP cytoplasmic compartmentalization and expressed pluripotency-related genes. Conclusion We describe the generation of epiBlastoids that may find useful application in the assisted reproduction field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.