Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been ten of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post translational modifications on aggregation, and a potential role for lipids membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Several diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease (HD), are associated with specific proteins aggregating and depositing within tissues and/or cellular compartments. The aggregation of these proteins is characterized by the formation of extended, β-sheet rich fibrils, termed amyloid. In addition, a variety of other aggregate species also form, including oligomers and protofibrils. Specifically, HD is caused by the aggregation of the huntingtin (htt) protein that contains an expanded polyglutamine domain. Due to the link between protein aggregation and disease, small molecule aggregation inhibitors have been pursued as potential therapeutic agents. Two such small molecules are epigallocatechin 3-gallate (EGCG) and curcumin, both of which inhibit the fibril formation of several amyloid-forming proteins. However, amyloid formation is a complex process that is strongly influenced by the protein's environment, leading to distinct aggregation pathways. Thus, changes in the protein's environment may alter the effectiveness of aggregation inhibitors. A well-known modulator of amyloid formation is lipid membranes. Here, we investigated if the presence of lipid vesicles altered the ability of EGCG or curcumin to modulate htt aggregation and influence the interaction of htt with lipid membranes. The presence of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine or total brain lipid extract vesicles prevented the curcumin from inhibiting htt fibril formation. In contrast, EGCG's
Huntington’s disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of a polyglutamine (polyQ) tract in the first exon of the htt protein (htt). PolyQ expansion triggers the aggregation of htt into a variety of structures, including oligomers and fibrils. This aggregation is impacted by the first 17 N-terminal amino acids (Nt17) of htt that directly precedes the polyQ domain. Beyond impacting aggregation, Nt17 associates with lipid membranes by forming an amphipathic α-helix. Post-translational modifications within Nt17 are known to modify HD pathology, and in particular, phosphorylation at T3, S13, and/or S16 retards fibrillization and ameliorates the phenotype in HD models. Due to Nt17’s propensity to interact with lipid membranes, the impact of introducing phosphomimetic mutations (T3D, S13D, and S16D) into htt-exon1 on aggregation in the presence of a variety of model lipid membranes (total brain lipid extract, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidylcholine, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1′-rac-glycerol) was investigated. Phosphomimetic mutations altered htt’s interaction with and aggregation in the presence of lipids; however, this was dependent on the lipid system.
Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain within the huntingtin protein (htt) that initiates toxic protein aggregation. Htt directly interacts with membranes, influencing aggregation and spurring membrane abnormalities. These interactions are facilitated by the 17 N-terminal residues (Nt17) that form an amphipathic α-helix implicated in both lipid binding and aggregation. Here, the impact of unsaturation in phospholipid tails on htt−lipid interaction and htt aggregation was determined. There was no correlation between the degree of htt−lipid complexation and the degree of htt aggregation in the presence of each lipid system, indicating that lipid systems with different properties uniquely alter the membrane-mediated aggregation mechanisms. Also, the association between Nt17 and membrane surfaces is determined by complementarity between hydrophobic residues and membrane defects and how easily the peptide can partition into the bilayer. Our results provide critical insights into how membrane physical properties influence downstream htt aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.