SummaryWe isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. 80th proteins are the result of alternative splicing of the product of the agrin gene, but, unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrinrelated protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin.
Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system.
The basic helix-loop-helix transcription factor Neurogenin2 (NGN2) is expressed in distinct populations of neural progenitor cells within the developing central and peripheral nervous systems. Transgenic mice containing ngn2/lacZ reporter constructs were used to study the regulation of ngn2 in the developing spinal cord. ngn2/lacZ transgenic embryos containing sequence found 5' or 3' to the ngn2 coding region express lacZ in domains that reflect the spatial and temporal expression profile of endogenous ngn2. A 4.4-kb fragment 5' of ngn2 was sufficient to drive lacZ expression in the ventral neural tube, whereas a 1.0-kb fragment located 3' of ngn2 directed expression to both dorsal and ventral domains. Persistent -gal activity revealed that the NGN2 progenitor cells in the dorsal domain give rise to a subset of interneurons that send their axons to the floor plate, and the NGN2 progenitors in the ventral domain give rise to a subset of motor neurons. We identified a discrete element that is required for the activity of the ngn2 enhancer specifically in the ventral neural tube. Thus, separable regulatory elements that direct ngn2 expression to distinct neural progenitor populations have been defined.
The localization, isoform pattern, and mRNA distribution of the synapse-organizing molecule agrin was investigated in the developing avian retina. Injection of anti-agrin Fab fragments into the vitreous humor of chick eyes of embryonic days 3 to 20, a procedure that labels only extracellular agrin, reveals staining in the inner and outer plexiform layers before, during, and after the period of synapse formation. The labeling in these layers changes from a diffuse to a punctate pattern at the time when synapses form. At all stages investigated, the inner limiting membrane (a basal lamina that separates vitreous from neural retina) is intensely labeled, as are the axonal processes of retinal ganglion cells in the optic fiber layer and in the optic nerve, although the staining intensity declines after embryonic day 10 in both retina and optic nerve. In culture, axons of retinal ganglion cells also express agrin-like immunoreactivity on their surfaces. Polymerase chain reaction analysis reveals that several different agrin isoforms are expressed in the developing neural retina. In situ hybridization studies show that agrin isoforms are expressed in the ganglion cell and inner nuclear layers, correlating well with the staining for agrin protein in the optic fiber and plexiform layers. The expression of mRNA coding for several agrin isoforms and the presence of extracellular agrin in the synapse-containing layers during the period of synapse formation is consistent with the idea that agrin isoforms might play a role during synapse formation in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.