Environmental Services, Salt River Project, Tempe, AZ, U.S.A. SUMMARY 1. Riparian vegetation in dry regions is influenced by low-flow and high-flow components of the surface and groundwater flow regimes. The duration of no-flow periods in the surface stream controls vegetation structure along the low-flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow-regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low-flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought-tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient-holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood-dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on floodsuppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 651 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south-western United States, some focus on re-establishing hydrogeomorphic processes by restoring appropriate flows of surface water,...
Aim To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species.Location The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona.Methods We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii , and introduced Tamarix ) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. ResultsPopulus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows.Main conclusions Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix . On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix , both of which have narrow germination windows . The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type.
As global climate change affects recharge and runoff processes, stream flow regimes are being altered. In the American Southwest, increasing aridity is predicted to cause declines in stream base flows and water tables. Another potential outcome of climate change is increased flood intensity. Changes in these stream flow conditions may independently affect vegetation or may have synergistic effects. Our goal was to extrapolate vegetation response to climate-linked stream flow changes, by taking advantage of the spatial variation in flow conditions over a 200 km length of the San Pedro River (Arizona). Riparian vegetation traits were contrasted between sites differing in low-flow hydrology (degree of stream intermittency) and flood intensity (stream power of the 10-year recurrence flood). Field data indicate that increased stream intermittency would cause the floodplain plant community to shift from hydric pioneer trees and shrubs (Populus, Salix, Baccharis) towards mesic species (Tamarix). This shift in functional type would produce changes in vegetation structure, with reduced canopy cover and shorter canopies at drier sites. Among herbaceous species, annuals would increase while perennials would decrease. If flood intensities increased, there would be shifts towards younger tree age, expansion of xeric pioneer shrubs (in response to flood-linked edaphic changes), and replacement of herbaceous perennials by annuals. Woody stem density would increase and basal area would decrease, reflecting shifts towards younger forests. Some effects would be compounded: Annuals were most prevalent, and tree canopies shortest, at sites that were dry and intensely flooded. Vegetational changes would feedback onto hydrologic and geomorphic processes, of importance for modeling. Increased flood intensity would have positive feedback on disturbance processes, by shifting plant communities towards species with less ability to stabilize sediments. Feedbacks between riparian vegetation and stream lowflow changes would be homeostatic, with reduced evapotranspiration rates ameliorating declines in base flows arising from increased aridity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.