The development of high-throughput technologies and the resulting large-scale data sets have necessitated a systems approach to the analysis of metabolic networks. One way to approach the issue of complex metabolic function is through the calculation and interpretation of extreme pathways. Extreme pathways are a mathematically defined set of generating vectors that describe the conical steady-state solution space for flux distributions through an entire metabolic network. Herein, the extreme pathways of the well-characterized human red blood cell metabolic network were calculated and interpreted in a biochemical and physiological context. These extreme pathways were divided into groups based on such criteria as their cofactor and by-product production, and carbon inputs including those that 1) convert glucose to pyruvate; 2) interchange pyruvate and lactate; 3) produce 2,3-diphosphoglycerate that binds to hemoglobin; 4) convert inosine to pyruvate; 5) induce a change in the total adenosine pool; and 6) dissipate ATP. Additionally, results from a full kinetic model of red blood cell metabolism were predicted based solely on an interpretation of the extreme pathway structure. The extreme pathways for the red blood cell thus give a concise representation of red blood cell metabolism and a way to interpret its metabolic physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.