Plants intimately associate with diverse bacteria. Plant-associated (PA) bacteria have ostensibly evolved genes enabling adaptation to the plant environment. However, the identities of such genes are mostly unknown and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3837 bacterial genomes to identify thousands of PA gene clusters. Genomes of PA bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant associated genomes. We experimentally validated candidates from two sets of PA genes, one involved in plant colonization, the other serving in microbe-microbe competition between PA bacteria. We also identified 64 PA protein domains that potentially mimic plant domains; some are shared with PA fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides leads for efficient and sustainable agriculture through microbiome engineering.
The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.
Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.
In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants were overcome, resulting in increased removal of these chemicals. Overexpression of mammalian genes encoding cytochrome P450s led to increased metabolism and removal of a variety of organic pollutants and herbicides. Genes involved in the uptake or detoxification of metal pollutants were used to enhance phytoremediation of this important class of pollutants. Transgenic plants containing specific bacterial genes converted mercury and selenium to less toxic forms. In addition to these transgenic approaches, the use of microbes that live within plants, termed endophytes, also led to improved tolerance to normally phytotoxic chemicals and increased removal of the pollutants. Bacteria that degraded a herbicide imparted resistance to the herbicide when inoculated into plants. In another study, plants harboring bacteria capable of degrading toluene were more tolerant to normally phytotoxic concentrations of the chemical, and transpired less of it into the atmosphere. This review examines the recent advances in enhancing phytoremediation through transgenic plant research and through the use of symbiotic endophytic microorganisms within plant tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.