The growth and production of miniature dwarf tomato selection Lycopersicon esculentum 'Micro-Tom' plants grown from seedling to harvest in solution batph culture' at four different NaCl salinity levels (2.4 [control, no NaCl], 7.6, 12.8, or 18 dS-m -1 solution conductivities) was monitored. Incremental reductions in canopy extent and shoot area of 'Micro-Tom' were observed with increasing solution NaCl level. Root growth and shoot height were somewhat less responsive to imposed salinity. Fruit number, fruit size, and leaf tissue osmotic potential decreased as NaCl concentration increased.Fruit yield was highly correlated with total canopy and shoot area, but not with tissue osmotic or total water potential. 'Micro-Tom' plants survived and continued fruit production at higher salinity levels despite reduced canopy growth. Treatment effects on vegetative growth and fruit production became more pronounced later in the growth cycle.
Enrichment of CO2 to 46 mmol m-3 (1000 mm3 dm-3) at a moderate photosynthetic photon flux (PPF) of 450 micromoles m-2 s-1 stimulated fresh and dry weight gain of lettuce leaves 39% to 75% relative to plants at 16 mmol m-3 CO2 (350 mm3 dm-3). Relative growth rate (RGR) was stimulated only during the first several days of exponential growth. Elevating CO2 above 46 mmol m-3 at moderate PPF had no further benefit. However, high PPF of 880-900 micromoles m-2 s-1 gave further, substantial increases in growth, RGR, net assimilation rate (NAR) and photosynthetic rate (Pn), but a decrease in leaf area ratio (LAR), at 46 or 69 mmol m-3 (1000 or 1500 mm3 dm-3) CO2, the differences being greater at the higher CO2 level. Enrichment of CO2 to a supraoptimal level of 92 mmol m-3 (2000 mm3 dm-3) at high PPF increased leaf area and LAR, decreased specific leaf weight, NAR and Pn and had no effect on leaf, stem and root dry weight or RGR relative to plants grown at 69 mmol m-3 CO2 after 8 d of treatment. The results of the study indicate that leaf lettuce growth is most responsive to a combination of high PPF and CO2 enrichment to 69 mmol m-3 for several days at the onset of exponential growth, after which optimizing resources might be conserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.