Bats and other flying mammals are distinguished by thin, compliant membrane wings. In an effort to understand the dependence of aerodynamic performance on membrane compliancy, wind-tunnel tests of low-aspect-ratio, compliant wings were conducted for Reynolds numbers in the range of 0:7-2:0 10 5. The lift and drag coefficients were measured for wings of varying aspect ratio, compliancy, and prestrain values. In addition, the static and dynamic deformations of compliant membrane wings were measured using stereo photogrammetry. A theoretical model for membrane camber due to aerodynamic loading is presented, indicating that the appropriate nondimensional parameter describing the problem is a Weber number that compares the aerodynamic load to the membrane elasticity. Excellent agreement between the theory and experiments is found. Measurements of aerodynamic performance show that, in comparison with rigid wings, compliant wings have a higher lift slope, maximum lift coefficients, and a delayed stall to higher angles of attack. In addition, they exhibit a strong hysteresis both around a zero angle of attack as well as around the stall angle. Unsteady membrane motions were also measured, and it is observed that the membrane vibrates with a spatial structure that is closely related to the free eigenmodes of the membrane under tension and that the Strouhal number at which the membrane vibrates rises with the freestream velocity, coinciding with increasing multiples of the natural frequency of the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.