The fabrication of highly customizable scaffolds is a key enabling technology in the development of predictive in vitro cell models for applications in drug discovery, cancer research, and regenerative medicine. Naturally derived and synthetic hydrogels are good candidates for in vitro cell growth studies, owing to their soft and biocompatible nature; however, they are often hindered by limited ranges of stiffness and the requirement to modify the gel with additional extracellular matrix (ECM) proteins for cell adherence. Here, we report on the synthesis of a printable synthetic hydrogel based on cysteine-modified poly(acrylic acid) (PAA-Cys) with tuneable mechanical and swelling properties by incorporating acrylic acid into the PAA-Cys network and subsequent photoinitiated thiol-acrylate cross-linking. Control of the acrylic acid concentration and UV curing time produces a series of hydrogels with swelling ratios in excess of 100% and Young’s modulus values ranging from ∼2 to ∼35 kPa, of which most soft tissues fall within. Biocompatibility studies with RPE1 cells showed excellent cell adhesion and cell viability without the need for further modification with ECM proteins, but still can be modified as needed. The versatility of the hydrogel tuneable properties is demonstrated by culturing with RPE1 cells, which in vivo perform an important function in the visual process and the dysfunction of which may lead to various retinal abnormalities, such as glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.