Of the several families of adhesion receptors involved in leukocyte-endothelial cell interactions, only the selectins have been shown to initiate leukocyte interaction under physiologic shear; indeed, beta 2 (CD18) intergrins responsible for neutrophil arrest are unable to engage without prior selectin-mediated rolling. In contrast, alpha 4 (CD49d) integrins are shown here to initiate lymphocyte contract ("tethering") in vitro under shear and in the absence of a selectin contribution. The alpha 4 integrin ligands MAdCAM-1 and VCAM-1 support loose reversible interactions including rolling, as well as rapid sticking and arrest that is favored following integrin activation. Moreover, alpha 4 beta 7 mediates L-selectin (CD62L)-independent attachment of blood-borne lymphocytes to lamina propria venules in situ. Scanning electron microscopy of alpha 4 beta 7hi lymphoid cells reveals that, like L-selectin, alpha 4 beta 7 is highly concentrated on microvillous sites of initial cellular contact, whereas the beta 2 integrin LFA-1 is excluded from villi. Thus, alpha 4 but not beta 2 integrins can initiate leukocyte adhesion under flow, a capacity that may be in part a function of topographic presentation on microvilli.
Leukocyte adhesion to endothelium requires specialized mechanisms for contact initiation under flow. L-selectin (CD62L), an efficient initiator of adhesion, is clustered on the tips of leukocyte microvilli. To test whether microvillous presentation is critical for contact formation ("tethering"), we transfected lymphoid cells with chimeras of L-selectin and CD44, an adhesion molecule that is excluded from microvilli. CD44 transmembrane and intracellular (TM-IC) domains targeted the L-selectin ectodomain to the planar body, whereas L-selectin TM-IC segments conferred CD44 ectodomain clustering on microvilli. Wild-type and chimeric transfectants bound similarly to anti-ectodomain MAbs in static assays, but MAb binding under flow was much more efficient in the context of microvillous presentation. Similarly, wild-type and chimeric L-selectin possessed equivalent lectin activity, but microvillous presentation dramatically enhanced contact initiation on a native ligand. These findings demonstrate a critical role for receptor topography in leukocyte adhesion and suggest a novel regulatory mechanism of leukocyte trafficking.
We have developed a method utilizing high-resolution field emission SEM and backscatter electron imaging of immunogold for detection of cell adhesion receptors on the surface of unfixed human neutrophils, using indirect immunogold localization of specific murine monoclonal antibodies (MAb) to the cell adhesion receptors L-selectin (LECAM-1) and the beta 2 integrin (Mac-1). We have observed that these two receptor populations occupy different membrane domains on the surface of unactivated human neutrophils. LECAM-1 was observed to occur in clusters on the tips of microvilli or membrane ruffles and was seldom detected on the membrane of the cell body. On the other hand, Mac-1 was found mainly on the membrane of the cell body in unactivated neutrophils, either singly or in small clusters, and was only rarely encountered on microvilli or ruffles. In contrast, the distribution of Mac-1 on activated, spreading neutrophils was markedly increased (up-regulated) and occurred in clusters on both the membrane of the cell body and also of surface projections, i.e., microvilli and ruffles. The unique distributions of LECAM-1 and Mac-1 on the surface of unactivated human neutrophils, as observed by high-resolution LVSEM, confirm the spatial relationships of these receptor types as predicted by models for the attachment of circulating neutrophils to vascular endothelium and their emigration to sites of inflammation.
We used transmission and scanning electron microscopy in conjunction with immunogold labeling to study cell surface molecules for evidence of distribution-function relationships. Ascription of functional significance to surface distribution therefore requires preservation of cell morphology and maintenance of molecular expression and distribution through the multiple steps of cell preparation. These requirements prompted us to compare two methods for preparing leukocytes for analysis of surface molecule distribution: one method involved using low temperature to "stabilize" cell morphology and surface molecular organization through immunolabeling; the other involved fixation of the cells with dilute glutaraldehyde before their isolation and labeling. Binding of primary antibodies to several surface molecules, measured by flow cytometry, was comparable for cells prepared by the two methods. Cell morphology and molecular distributions, assessed by high-resolution field emission SEM, were likewise comparable. These results support the conclusion that cell morphologies and CAM distributions previously reported were not affected by exposure of the cells to low temperature through isolation and immunolabeling. Our additional observation that Thy-1 is expressed on both non-projecting and projecting membrane domains of mouse lymph node lymphocytes and rat thymocytes represents a third and new pattern of surface molecule distribution.
We have examined the topographical distribution of L-selectin on surface membrane domains of human lymphocytes and murine L1-2 cells transfected to express human L-selectin. L-selectin was immunolocalized using murine monoclonal DREG 200 Fab antibody and a 12 nm colloidal gold-conjugated secondary antibody. Cell surface morphology and surface distribution of gold-labelled L-selectin were visualized using backscatter electron images obtained by high-resolution, field emission scanning electron microscopy. The topographical morphologies of lymphocytes of both types were complex. The surface of human lymphocytes was composed of both microvilli and ruffles; that of the murine cells was composed of long microvilli and few, if any, ruffles. L-selectin on human lymphocytes was observed primarily as focal clusters on the apical surfaces of ruffles and microvilli. Similarly, on the transfected murine cells, L-selectin was detected predominantly on the apical surface of microvilli. We conclude that L-selectin has a common spatial distribution and clustered organization on all leukocytes examined to-date, and that these features of receptor expression likely facilitate rolling of circulating leukocytes on the endothelial surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.