To facilitate warning of low-level wind shear associated with convective storms, a Terminal Doppler Weather Radar (TDWR) was installed about 12 km to the northeast of the Hong Kong International Airport (HKIA). The HKIA is located just off the northern shore of an island known as Lantau. The HKIA lies on the lee side of the complex terrain of Lantau when winds come from the east through southwest.With the commissioning of the TDWR in 1997, interesting high-resolution radar data were collected in strong southerly flows during tropical cyclone passages. These data sets reveal the complex low-level atmospheric flow in the vicinity of the HKIA, including streaks of low-speed flow, reverse flows, small-scale vortices and high-speed gap flows . Animation sequences of the radar images suggest existence of von Kármán vortex streets and vortex shedding in the wake regions. These phenomena could induce strong shear regions which led to significant low-level wind shear for landing/departing aircraft. Analysis of on-board flight data for a wind shear event experienced by a landing aircraft in strong southeasterly flow revealed that terrain-induced features with horizontal scale less than 1 km brought significant air speed changes to the aircraft over a short duration of time.
Local severe storms are extreme weather events that last only for a few hours and evolve rapidly. Very often the mesoscale features associated these local severe storms are not well-captured synoptically. Forecasters have to predict the changing weather situation in the next 0-6 hrs based on latest observations. The operational process to predict the weather in the next 0-6 hrs is known as “nowcast”. Observational data that are typically suited for nowcasting includes Doppler Weather Radar (DWR), wind profiler, microwave sounder and satellite radiance. To assist forecasters, in predicting the weather information and making warning decisions, various nowcasting systems have been developed by various countries in recent years. Notable examples are Auto-Nowcaster (U.S.), BJ-ANC (China-U.S.), CARDS (Canada), GRAPES-SWIFT (China), MAPLE (Canada), NIMROD (U.K.), NIWOT (U.S.), STEPS (Australia), SWIRLS (Hong Kong, China), TIFS (Australia), TITAN (U.S.) (Dixon and Wiener, 1993) and WDSS (U.S.). Some of these systems were used in the two forecast demonstration projects organized by WMO for the Sydney 2000 and Beijing 2008 Olympic. A common feature of these systems is that they all use rapidly updated radar data, typically once every 6 minutes.The nowcasting system SWIRLS (“Short-range Warning of Intense Rainstorms in Localized Systems”) has been developed by the Hong Kong Observatory (HKO) and was put into operation in Hong Kong in 1999. Since then system has undergone several upgrades, the latest known as “SWIRLS-2” to support the Beijing 2008 Olympic Games. SWIRLS-2 is being adapted by India Meteorological Department (IMD) for use and test for the Commonwealth Games 2010 at New Delhi with assistance from HKO. SWIRLS-2 ingests a range of observation data including SIGMET/IRIS DWR radar product, raingauge data, radiosonde data, lightning data to analyze and predict reflectivity, radar-echo motion, QPE, QPF, as well as track of thunderstorm and its associated severe weather, including cloud-to-ground lightning, severe squalls and hail, and probability of precipitation. SWIRLS-2 uses a number of algorithms to derive the storm motion vectors. These include TREC (“Tracking of Radar Echoes by Correlation”), GTrack (Group tracking of radar echoes, an object-oriented technique for tracking the movement of a storm as a whole entity) and lately MOVA (“Multi-scale Optical flow by Variational Analysis”). This latest algorithm uses optical flow, a technique commonly used in motion detection in image processing, and variational analysis to derive the motion vector field. By cascading through a range of scales, MOVA can better depict the actual storm motion vector field as compared with TREC and GTrack which does well in tracking small scales features and storm entity respectively. In this paper the application of TREC and MOVA to derive the storm motion vector, reflectivity and QPF using Indian DWR data has been demonstrated for the thunderstorm events over Kolkata and New Delhi. The system has been successfully operationalized for Delhi and neighborhood area for commonwealth games 2010. Real time products are available on IMD website
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.