[1] Previous studies have shown strong contrasting trends in annual sea ice duration and in monthly sea ice concentration in two regions of the Southern Ocean: decreases in the western Antarctic Peninsula/southern Bellingshausen Sea (wAP/sBS) region and increases in the western Ross Sea (wRS) region. To better understand the evolution of these regional sea ice trends, we utilize the full temporal (quasi-daily) resolution of satellite-derived sea ice data to track spatially the annual ice edge advance and retreat from 1979 to 2004. These newly analyzed data reveal that sea ice is retreating 31 ± 10 days earlier and advancing 54 ± 9 days later in the wAP/sBS region (i.e., total change over , whereas in the wRS region, sea ice is retreating 29 ± 6 days later and advancing 31 ± 6 days earlier. Changes in the wAP/sBS and wRS regions, particularly as observed during sea ice advance, occurred in association with decadal changes in the mean state of the Southern Annular Mode (SAM; negative in the 1980s and positive in the 1990s) and the high-latitude response to El Niño-Southern Oscillation (ENSO). In general, the high-latitude ice-atmosphere response to ENSO was strongest when -SAM was coincident with El Niño and when +SAM was coincident with La Niña, particularly in the wAP/sBS region. In total, there were 7 of 11 -SAMs between 1980 and 1990 and the 7 of 10 +SAMs between 1991 and 2000 that were associated with consistent decadal sea ice changes in the wAP/sBS and wRS regions, respectively. Elsewhere, ENSO/SAMrelated sea ice changes were not as consistent over time (e.g., western Weddell, Amundsen, and eastern Ross Sea region), or variability in general was high (e.g., central/ eastern Weddell and along East Antarctica).
The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response.
The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a approximately 63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases equatorward of 63 degrees S and with substantial increases in Chl a occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.