This paper addresses hardware implementation of a power efficient retinal encoder system used in visual prosthesis equipment for blind people. The hardware architecture is inspired from the retinal receptive fields in mammalian vision system. The captured image is passed through several filter banks in different filtering stages in primate vision system. As the photoreceptors in the primate vision system are arranged in hexagonal fashion, the hexagonal tessellation scheme was found to be the most suitable sampling scheme for retinal image processing. In this work, the hardware implementation of different retinal filtering stages and final edge detection scheme is performed in Altera Cyclone II FPGA and in Synopsys Design Vision. An area efficient Cellular Logic Array Processing (CLAP) algorithm is used as the final stage edge detector. Both rectangular and hexagonal edge detection schemes were tested and their performance was analysed using Berkeley Segmentation Dataset and ROC performance scheme.
Over the past few years, tracking an object and finding a position is one of the day-to-day activities of our life. For finding the position and to tell that position is the accurate one, we need to rely on a novel localization method. Localization is nothing but a system that tells how to accurately find a position. The fundamental thought in most localization algorithm is that few nodes are inculcated with GPS, and are called as beacon nodes. Using the beacon nodes, other nodes localize themselves, which is a very basic concept in localization. The existing approaches tell that localization algorithm works based on finding out the accurate position in a 2-D environment even in the existence of malignant beacon nodes. Our aim is to suggest a new localization algorithm that is suitable for 3-D environment and that algorithm works even more efficiently in the presence of malignant beacon nodes which makes the system “robust”. The performance of the system is compared with other 3-D approaches used for localization.
L-band Digital Aeronautical Communication System (LDACS) aims to exploit vacant spectrum in L-band via spectrum sharing, and orthogonal frequency division multiplexing (OFDM) is the currently accepted LDACS waveform. Recently, various works dealing with improving the spectrum utilization of LDACS via filtering/windowing are being explored. In this direction, we propose an improved and low complexity reconfigurable filtered OFDM (LRef-OFDM) based LDACS using novel interpolation and masking based multi-stage digital filter. The proposed filter is designed to meet the stringent non-uniform spectral attenuation requirements of LDACS standard. It offers significantly lower complexity as well as higher transmission bandwidth than stateof-the-art approaches. We also integrate the proposed filter in our end-to-end LDACS testbed realized using Zynq System on Chip and analyze the performance in the presence of L-band legacy user interference as well as LDACS specific wireless channels. Via extensive experimental results, we demonstrate the superiority of the proposed LRef-OFDM over OFDM and Filtered-OFDM based LDACS in terms of power spectral density, bit error rate, implementation complexity, and group delay parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.