Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.ichthyoplankton | Scombridae | large pelagic fish | pop-up satellite archival tag | population structure L ong-distance migrations pose a unique challenge to fisheries management, as conservation actions taken on a regional scale can be undermined if less stringent measures are implemented across other parts of the migratory pathway. Few species exemplify this problem better than Atlantic bluefin tuna (Thunnus thynnus). This species is harvested by the fisheries of over 20 nations, from the tropics to subarctic and coastal to international waters. Contentious international disputes have persisted for decades over how many bluefin tuna to harvest and how to allocate catch among nations. By the start of the 21st century, intense fishing pressure had driven this species to historically low population levels, a decline that has since reversed as fishing mortality has decreased under stricter management (1). However, despite this recent positive trend, many challenges remain in developing an ecologically sustainable fishery for bluefin tuna that also provides economic and social benefits to the fishing communities throughout its range. Among the most prominent of these challenges is the need for stock assessment models and management regulations that better account for the complex movements of this species.The movements of Atlantic bluefin t...
We gathered mitochondrial DNA sequences (557 bp from the control region in 935 specimens and 668 bp of the cytochrome b gene in 139 specimens) of Pacific herring collected from 20 nearshore localities spanning the species' extensive range along the North Pacific coastlines of Asia and North America. Haplotype diversity and nucleotide diversity were high, and three major phylogeographic lineages (sequence divergences ca. 1.5%) were detected. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidence, we infer that the genetic make-up of extant populations of C. pallasii was shaped by Pleistocene environmental impacts on the historical demography of this species. A deep genealogical split that cleanly distinguishes populations in the western vs. eastern North Pacific probably originated as a vicariant separation associated with a glacial cycle that drove the species southward and isolated two ancestral populations in Asia and North America. Another deep genealogical split may have involved either a vicariant isolation of a third herring lineage (perhaps originally in the Gulf of California) or it may have resulted simply from the long coalescent times that are possible in large populations. Coalescent analyses showed that all the three evolutionary lineages of C. pallasii experienced major expansions in their most recent histories after having remained more stable in the preceding periods. Independent of the molecular calibration chosen, populations of C. pallasii appear to have remained stable or grown throughout the periods that covered at least two major glaciations, and probably more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.