The fungal polyketide synthases (PKS) are responsible for the biosynthesis of several polyketide natural products, mycotoxins, pigments, etc. In the present times, we use computational tools to gain insight into polyketide natural products that may contribute to the metabolic versatility of this important phytopathogenic filamentous fungi. In total, we have identified 17 type-I PKS related gene clusters from the Macrophomina phaseolina genome. Among these 27 ketosynthase (KS) domains have been retrieved and used for the study. The study reveals that genome of M. phaseolina comprises non-reducing (NR), partially reducing (PR) and reducing (R) type of polyketides, and are clustered into three clades and several subclades. The phylogenetic analysis of KS domain sequences of M. phaseolina indicates that some PKS sequences are most closely related to polyketide natural product homologs such as lovastatin diketide, mycotoxins (fumonisin, citrinin and patulin) and pigment melanin. We also found eight orphan KS domains from three reducing PKS, i.e. MPH10374, MPH10375 and MPH10376. The study represents a potential novel source of industrially important polyketide natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.