Constructed wetland-microbial electrochemical snorkel (CW-MES) systems, which are short-circuited microbial fuel cells (MFC), have emerged as a novel tool for wastewater management, although the system mechanisms are insufficiently studied in process-based or environmental contexts. Based on quantitative polymerase chain reaction assays, we assessed the prevalence of different nitrogen removal processes for treating nitrate-rich waters with varying cathode materials (stainless steel, graphite felt, and copper) and sizes in the CW-MES systems and correlated them to the changes of N2O emissions. The nitrate and nitrite removal efficiencies were in range of 40% to 75% and over 98%, respectively. In response to the electrochemical manipulation, the abundances of most of the nitrogen-transforming microbial groups decreased in general. Graphite felt cathodes supported nitrifiers, but nirK-type denitrifiers were inhibited. Anaerobic ammonium oxidation (ANAMMOX) bacteria were less abundant in the electrochemically manipulated treatments compared to the controls. ANAMMOX and denitrification are the main nitrogen reducers in CW-MES systems. The treatments with 1:1 graphite felt, copper, plastic, and stainless-steel cathodes showed higher N2O emissions. nirS- and nosZI-type denitrifiers are mainly responsible for producing and reducing N2O emissions, respectively. Hence, electrochemical manipulation supported dissimilatory nitrate reduction to ammonium (DNRA) microbes may play a crucial role in producing N2O in CW-MES systems.
Microbial electrosynthesis is a promising solution for removing nitrate from water with a low concentration of electron donors. Three single-chamber microbial electrosynthesis reactors were constructed and operated for almost 2 years. The single-chamber reactor design saves on construction costs, and the pH of the solute is more stable than that in the case of a two-chamber reactor. Nitrate reduction started at the working electrode potential of −756 mV versus standard hydrogen electrode (SHE), and subsequently, the working electrode potential could be increased without hindering the process. The optimal potential was −656 mV versus SHE, where the highest Faradaic efficiency of 71% and the nitrate removal rate of 3.8 ± 1.2 mgN-NO3/(L×day) were registered. The abundances of nitrite reductase and nitrous oxide reductase genes were significantly higher on the working electrode compared to the counter electrode, indicating that the process was driven by denitrification. Therefore, a microbial electrosynthesis reactor was successfully applied to remove nitrate and can be utilized for purifying water when adding organic compounds as electron donors is not feasible, that is, groundwater. In addition, at the lower working electrode potentials, the dissimilatory nitrate reduction to ammonium was observed.
<p>Freezing and thawing are common phenomena and potential sources of N2O emissions in ecosystems at high latitudes. Earlier it was hypothesized that the frozen soil layer might trap the underlying production of N2O and release this as the top layer is thawed. However, newer research has found other factors playing role in the de novo emissions such as fluctuating availability of organic matter, nitrates, and ammonia, microbial activity, and changing oxic conditions of the soil. But, the variation in the abundance of genes involved in the nitrogen cycle during these events is rarely explained thus, a generally accepted theory of the impact of freeze-thaw on N2O fluxes is still missing.<br />To further investigate the relationships between physical, chemical, and microbial parameters with N2O emissions, we conducted a two-week experiment of three thaw-freeze events in March 2022 using artificial heating with electrical cables installed in collars of greenhouse gas sampling chambers conducted in a drained Downy birch peatland forest. Gas and soil samples were obtained on three non-consecutive days from these collars. Soil temperature, soil water content (SWC), NH4-N, and NO3-N were measured in the soil. Also, the abundances of functional genes involved in the nitrification (bacterial, archaeal, and comammox (complete ammonia oxidation) amoA) and denitrification (nirS, nirK, nosZI, and nosZII) were known using qPCR.<br />Our results show that artificial heating induced the thawing of the frozen top layer of soil during our experiment. The increase in soil surface temperature positively correlated with the soil water content in the top layer (R=0.58, p<0.01). N2O emissions also increased with heating and correlated with SWC (R=0.38, p<0.01). Ammonia in soil decreased and was negatively associated with N2O emissions (R=&#8722;0.28, p<0.05), suggesting active nitrification as the amount of nitrates also increased during heating. The abundance of all functional genes significantly increased during the heating except for those responsible for the consumption of N2O (nosZ genes) during<br />denitrification. Although we found evidence of both active nitrification and denitrification, the multiple regressions between N2O emissions and the proportion of different functional genes suggest that the nirK-type denitrifiers dominated in the denitrification as well as in the overall production of the N2O (p<0.001). Meanwhile, the inactivation of N2O consumers (nosZ) at thawing temperatures resulted in the emission of N2O during the thawing events in the drained peatland&#8217;s nitrogen-rich soil.</p>
<p>Excess nitrogen has caused environmental issues by polluting the air and water. Many different processes help remove nitrogen compounds from contaminated soils and waters, and the presence of oxygen is one of the most decisive factors. Denitrification in anaerobic conditions is considered the main removal processes of excessive nitrogen, although lately discovered anaerobic ammonium oxidation (ANAMMOX) and dissimilatory nitrate reduction to ammonium (DNRA) may also have an important role in nitrogen elimination of different systems. To a lesser extent, also nitrification can contribute to nitrogen elimination in watery systems. All previously pointed out removal mechanisms occur in the constructed wetlands and could even be enhanced with the bio-electrochemical systems (BES). BES exploit the ability of the electroactive microorganisms to reduce the oxides of nitrogen.</p> <p>We analyzed various articles treating nitrate (NO<sub>3</sub>) polluted water in BES and normalized their NO<sub>3</sub> removal efficiencies to a common unit (mg liter<sup>&#8722;1</sup> day<sup>&#8722;1</sup>). We analyzed the effect of various factors such as electrode materials, working mode, type of inoculum, number of chambers, systems&#8217; capacity and the microbial community structure on the NO<sub>3</sub> removal efficiencies. The highest removal efficiencies were displayed by granular carbon and carbon cloth used as cathode and anode material, respectively. The electrode materials and operational parameters, such as working mode and number of chambers, were deemed important by the random forest classification algorithm. Continuous mode of operation, denitrifying microbes as inoculum type, and two chamber systems have displayed optimum NO<sub>3</sub> removal efficiencies. Feature selection using random forest classification showed the type of inoculum and capacity of the BES were unimportant factors.<em> </em><em>Proteobacteria</em> and <em>Firmicute</em> were the prominent phyla observed in BES treating NO<sub>3</sub> polluted water. Besides the denitrification (abundance of <em>narG, nirS, nirK, nosZI</em>, and <em>nosZII</em> genes) process in BES, there is evidence of electrochemical support for anaerobic ammonium oxidation (ANAMMOX) (abundance of <em>hzsB</em> or ANAMMOX specific 16S rRNA gene) and dissimilatory NO<sub>3</sub> reduction to ammonium (DNRA) (abundance of<em> nrfA</em> gene) processes. The results of this work aid in understanding the prevalent processes in the BES and help to build efficient BES for optimum NO<sub>3</sub> removal.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.