Background: Schistosomiasis is an immunopathogenic disease in which Th17 cells play vital roles. Hepatic granuloma formation and subsequent fibrosis are its main pathologic manifestations and the leading causes of hepatic cirrhosis, and effective therapeutic interventions are lacking. In this study, we explored the effects of fasudil, a selective RhoA–Rho-associated kinase (ROCK) inhibitor, on Th17 cells and the pathogenesis of schistosomiasis. Methods: Mice were infected with Schistosoma japonicum and treated with fasudil. The worm burden, hepatic granuloma formation, and fibrosis were evaluated. The roles of fasudil on Th17, Treg, and hepatic stellate cells were analyzed. Results: Fasudil therapy markedly reduced the granuloma size and collagen deposit in livers from mice infected with S. japonicum. However, fasudil therapy did not affect the worm burden in infected mice. The underlying cellular and molecular mechanisms were investigated. Fasudil suppressed the activation and induced the apoptosis of CD4+ T cells. Fasudil inhibited the differentiation and effector cytokine secretion of Th17 cells, whereas it upregulated Treg cells in vitro. It also restrained the in vivo interleukin (IL)-4 and IL-17 levels in infected mice. Fasudil directly induced the apoptosis of hepatic stellate cells and downregulated the expressions of hepatic fibrogenic genes, such as collagen type I (Col-I), Col-III, and transforming growth factor-1 (TGF-β1). These effects may contribute to its anti-pathogenic roles in schistosomiasis. Conclusions: Fasudil inhibits hepatic granuloma formation and fibrosis with downregulation of Th17 cells. Fasudil might serve as a novel therapeutic agent for hepatic fibrosis due to schistosome infections and perhaps other disorders.
However, in liver fibrosis caused by CCl 4 , Th1 cells occupied the dominant position, while proportions of Th2, Th17, and Treg cells decreased gradually. In conclusion, liver fibrosis was a complex pathological process that was regulated by a series of cytokines and immune cells. The pathological progressions and immune responses to S. japonicum or CCl 4 induced liver fibrosis were different, possibly because of their different injury mechanisms. The appropriate animal model should be selected according to the needs of different experiments and the pathogenic factors of liver fibrosis in the study.
DNA methylation is an important component of epigenetics that is involved in the occurrence and development of a variety of diseases. The present study aimed to clarify the relationship between cytochrome P450 (CYP)1A1 and CYP1B1 promoter CpG island methylation and isoniazid-induced liver injury in rats, and to explore the possible mechanism, rats were given an intragastric dose of isoniazid (55 mg·kg−1·d−1). High performance liquid chromatography was used to analyze the DNA methylation level of the whole genome in liver tissue. Methylation-specific polymerase chain reaction (PCR) was used to detect the methylation level of CpG islands in the promoter region of CYP1A1 and CYP1B1. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of CYP1A1, CYP1B1, toll-like receptor 4 (TLR4), extracellular signal-regulated kinase (ERK) 2, peroxisome proliferator-activated receptor (PPAR) -γ, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. The expression levels of CYP1A1 and CYP1B1 proteins were measured by ELISA, and malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were analyzed by colorimetric method. Liver tissue pathology, an indicator of liver function, indicated rat liver injury at 10 days following isoniazid treatment. Whole-genome methylation levels were gradually reduced, and methylation at day 7 post-treatment was significantly lower than the control group. CYP1A1 and CYP1B1 promoter CpG island methylation level was significantly increased at 3 days post-treatment. CYP1A1 and CYP1B1 mRNA expression levels were significantly reduced from day 7 and 10, respectively. These results suggested that CpG island hypermethylation of the CYP1A1 and CYP1B1 promoters regulate the low expression of genes involved in the occurrence of isoniazid-induced liver injury. With the alterations of CYP1A1 and CYP1B1 expression, the mRNA expression levels of TLR4, ERK, MDA, IL-6 and TNF-α were upregulated, and the expression of SOD and PPAR-γ were downregulated. These data demonstrated that alterations in methylation patterns may involve changes in the TLR4-ERK signaling pathway and PPAR-γ, which may alter the expression of MDA, SOD, IL-6 and TNF-α, leading to liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.