Symbolic Indirect Correlation (SIC) is a new classification method for unsegmented patterns. SIC requires two levels of comparisons. First, the feature sequences from an unknown query signal and a known multi-pattern reference signal are matched. Then, the order of the matched features is compared with the order of matches between every lexicon symbolstring and the reference string in the lexical domain. The query is classified according to the best matching lexicon string in the second comparison. Accuracy increases as classified feature-and-symbol strings are added to the reference string.
Let K be a finite extension of a characteristic zero field F. We say that a pair of n × n matrices (A,In this paper, we identify the smallest order circulant matrix representation for any subfield of a cyclotomic field. Furthermore, if p is a prime and K is a subfield of the p-th cyclotomic field, then we obtain a zero-one circulant matrix A of size p × p such that (A, J) represents K, where J is the matrix with all entries 1. In case, the integer n has at most two distinct prime factors, we find the smallest order 0, 1-companion matrix that represents the n-th cyclotomic field. We also find bounds on the size of such companion matrices when n has more than two prime factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.